
Genetics, Educational Attainment, and
Socioeconomic Trajectories over the Life Cycle*

Stefano Lombardi1,2,3,4, Nurfatima Jandarova5, Kristina Zguro6, Jarkko Harju5, Aldo
Rustichini7, and Andrea Ganna6,8,9

1VATT Institute for Economic Research, Helsinki, Finland
2IFAU and Uppsala Center for Labor Studies, Uppsala, Sweden

3IZA, Bonn, Germany
4Rockwool Foundation, Berlin, Germany

5Tampere University and Finnish Centre of Excellence in Tax Systems Research (FIT), Tampere, Finland
6Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland

7University of Minnesota, MN, USA
8Broad Institute of MIT and Harvard, MA, USA

9Analytic and Translational Genetics Unit, Massachusetts General Hospital, MA, USA

Abstract

Education is a major source of inequality in income and health. Polygenic in-
dices for educational attainment (EA-PGI) capture both direct and indirect ge-
netic influences on education, but their effects on income and health trajecto-
ries remain unclear. Using Finnish registry data on 51,735 graduates (972,897
person-year observations) followed annually since graduation for up to 25 years,
we report four findings. First, higher EA-PGI does not predict higher income at
labor market entry. Instead, it strongly predicts subsequent income growth, but
only among higher-educated people: tertiary-educated graduates at the 90th
percentile earn €45 612 (13.2 %) higher lifetime income than those at the 10th
percentile. Second, EA-PGI does not predict the quality of the first employer
but rather a higher job-to-job mobility toward better-paying firms, which drives
the long-run income divergence. Third, controlling for parental EA-PGI re-
duces the lifetime income gap to €13 003. Finally, the above results are unlikely
to be mediated by health, since EA-PGI only weakly predicts disease burden.
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1 Introduction

Understanding the origins, timing and persistence of differences in health, education,
and income – collectively referred to as socioeconomic status – is of central importance to
policymakers and society. While individual effort and choice contribute to these dis-
parities, they can also be largely shaped by life circumstances (Cunha and Heckman,
2007). For a child being born into an affluent family, having a low genetic predisposi-
tion to disease, or living in an economically striving area is a matter of chance. How-
ever, such factors shape socioeconomic status and, consequently, can affect equality of
opportunity both within and across generations (Roemer and Trannoy, 2016).

Economists have long sought to identify the drivers socioeconomic inequality, tra-
ditionally focusing on income disparities and, more recently, extending to differences
in health (Black et al., 2024). Income and health outcomes arise from a complex in-
terplay between genetics and environmental factors over the life cycle. The idea that
nature and nurture jointly determine outcomes is central to economic models of skill
formation (Cunha and Heckman, 2007), in which genetic endowments are considered
as propensities that occur via environmental interactions.1 Only recent developments
in molecular genetics, however, have made it possible to directly study how specific
genetic endowments relate to socioeconomic status.

The availability of polygenic indices (PGI) – summary measures of genetic propen-
sities for complex traits – has opened new avenues for studying the role of genetics
in socioeconomic outcomes. Most human traits, including long-term outcomes such
as wealth at retirement, exhibit substantial heritability (Barth, Papageorge, and Thom,
2020; Harden and Koellinger, 2020; Rustichini et al., 2023; Carvalho, 2025). Educa-
tional attainment (EA) has been a primary focus of this growing literature, facilitated
by large-scale genome-wide association studies (GWAS) and validated PGI (Okbay et
al., 2022). These scores capture both direct genetic effects – randomly inherited at con-
ception – and indirect effects, such as environmentally mediated influences of parental
genetics, i.e. genetic nurture (Kong et al., 2018).

Despite these advances, research provides limited insight into how genetic influ-
ences on socioeconomic status evolve over the life course. Most studies rely on cross-
sectional data, providing static estimates that are silent about the temporal dynamics
of inequality.2 It also remains unclear whether, and to what extent, genetic effects are
driven by certain population subgroups, such as by low- or high-educated individuals.
Finally, despite a large literature in economics points towards the role of employers in
determining wage inequality (see Kline, 2024, for a review), we do not know the role
of firms in mediating any existing income gaps by genetics.

1For reviews on gene-environment interactions, see Biroli et al. (2025) and Pereira et al. (2022).
2One recent exception is Akimova et al. (2025), who analyze career trajectories in the UK biobank.
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Understanding these mediating mechanisms is crucial for identifying when and
how environmental interventions may amplify or mitigate genetic predispositions.
Prior evidence indicates that genetic effects on SES vary across contexts, for exam-
ple, before and after the collapse of communism in Estonia (Rimfeld et al., 2018) and
by family background, with children of lower genetic endowments achieving better in
high-SES families, consistent with a compensatory role of family resources (Ghirardi
et al., 2024).

To address this gap, we combine comprehensive Finnish administrative register
data on education, income, demographics, and health with polygenic indices for edu-
cational attainment (EA-PGI). Each fresh graduate is repeatedly observed throughout
their prime working age since graduation until up to 25 years later, and workers are
matched each year to their current employer. With this matched employer-employee
panel data at hand, we adopt a trajectory-based approach to examine how the genetic
predisposition to education, captured by the EA-PGI, influences the evolution of la-
bor income, employer quality, and health over the life cycle, and whether the genetics
gradients in these outcomes vary across educational groups.

Overall, this paper analyzes the mechanisms underlying differences in socioeco-
nomic trajectories by analyzing the role of parental PGIs, by assessing the contribu-
tion of employers and labor market dynamics to the development of inequality, and
by examining whether health functions as an intermediate factor correlated with edu-
cational attainment, and thus potentially narrowing inequality gaps.

We advance the literature in the following important ways. First, we employ a
substantially larger sample with genetic information (including on parents) than pre-
vious studies. This, in combination with decades of register data, allows us to generate
highly precise estimates on the drivers of socioeconomic disparities. Second, we con-
sider income as a primary measure of socioeconomic inequality and exploit unusually
rich information from tax records on labor income on the continuum. This source of
information, which is still extremely rare in the sociogenomics literature, allows us
to avoid selective self-response, missing not-at-random, and measurement error that
could otherwise severely bias our estimates. Third, having access to repeated mea-
surements of both workers, employers, and their link over time, opens the way to
leveraging panel data methods to account for firm- and worker-level heterogeneity,
which in turns allows us to provide novel evidence on the role of genetics in explain-
ing the production of inequality in the labor markets.
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2 Results

2.1 EA-PGI predicts lifetime income trajectories, but only among individuals with
tertiary education.

The study includes 51 736 individuals with genome-wide genetic data linked to longi-
tudinal health and socioeconomic information. The data covers employment histories
(i.e., employee-employer links with job spells length), annual income from labor, capi-
tal, and benefits, and educational records (education level and field and school/university
identifiers). This information spans thirty years (1987–2019). We apply a dynamic
modelling framework to analyze the relation between EA-PGI and individual income
trajectories over time, adjusting for calendar year, birth year, gender, the first ten ge-
netic principal components, and biobank indicator. To enhance the transparency of
the results, all estimates are presented in both graphical and tabular form.

Comparing earned income trajectories between the 10th and 90th percentile of the
EA-PGI distribution over 25 years since graduation, Figure 1a shows that income lev-
els are initially very similar across groups. However, trajectories begin to diverge sub-
stantially over time. The gap in average income between 90th and 10th percentile
of EA-PGI 10 years from graduation is €3278 and widens further to €7571 by 25 years
from graduation (the average yearly earnings in the sample 10 and 25 years after grad-
uation is €24 932 and €34 858, respectively). The cumulated income over the 25 years
after graduation is €309 438 for individuals at the 10th percentile and €350 395 for those
at the 90th percentile of the EA-PGI distribution.

Strikingly, this genetic gradient in income varies markedly by educational attain-
ment. Figures 1b and 1c show that the income gap by genetics is driven entirely by in-
dividuals with tertiary education, while no systematic differences are observed among
the people with secondary education (63.4 % of the graduates has tertiary degree).
Among the tertiary-educated, differences in income trajectories widen up during the
first 15 years after graduation and then stabilize, at which point individuals are, on
average, 40 years old and approaching peak labor market attachment.

Table 1 reports the cumulated income over the 25 years following graduation by
EA-PGI percentiles and educational attainment. In the pooled sample (column 1), the
gap between the 10th and 90th percentile is €40 957, or approximately 13.2 %. Column
3 of the table confirms that the income gap is entirely driven by the tertiary-educated
individuals.

2.2 EA-PGI is associated with the tertiary-educated workers’ productivity.

To analyze the extent to which the income gradient in EA-PGI reflects higher pro-
ductivity in the labor market, we estimate an Abowd–Kramarz–Margolis (AKM), the
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Figure 1: Average annual income by EA-PGI level, over time and by education

(a) Pooled

(b) Secondary (c) Tertiary

Notes: Adjusted average annual income (in 2010 EUR) over time. Panel A uses full analysis sample,
while Panels B and C use subset of workers based on their highest qualification being either secondary
or tertiary degree, respectively. The lines correspond to 10th and 90th percentiles of EA-PGI distribu-
tion. Average income estimated from a regression of annual income on EA-PGI fully interacted with
indicators measuring years since graduation and controlling for first ten genetic principal components,
gender, year of birth, calendar year, and biobank indicators. The shaded areas correspond to 95% CIs.
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Table 1: Cumulative lifetime income by EA-PGI percentiles

Dependent variable: cumulated income

Pooled Secondary Tertiary

EA-PGI percentiles
10th 309 438 262 462 345 947

(1 316) (1 440) (1 959)
20th 316 387 260 071 353 686

(1 040) (1 156) (1 543)
30th 321 424 258 337 359 296

( 900) (1 046) (1 307)
40th 325 748 256 849 364 111

( 844) (1 041) (1 176)
50th 329 829 255 444 368 656

( 856) (1 114) (1 137)
60th 333 865 254 055 373 151

( 929) (1 247) (1 187)
70th 338 193 252 566 377 971

(1 060) (1 438) (1 327)
80th 343 367 250 785 383 733

(1 264) (1 708) (1 578)
90th 350 395 248 366 391 560

(1 590) (2 119) (2 004)

Obs. 51 056 18 692 32 364

Notes: The table reports adjusted lifetime income (up to 25 years since grad-
uation) by EA-PGI percentiles. Average lifetime income adjusted by regress-
ing cumulated income on EA-PGI and controlling for first ten genetic princi-
pal components, gender, year of birth, calendar year, and biobank indicators.
Income discounted to obtain its net present value upon graduation (see Sec-
tion 4.2 for additional information). Standard errors reported in parentheses.

5



workhorse model in economics for decomposing wage variation into worker and firm
components (Abowd, Kramarz, and Margolis, 1999; Kline, 2024). The model exploits
repeated measurements of worker’s wage, relating it to individual- and firm-specific
fixed effects. After model estimation, each worker is assigned a corresponding esti-
mated fixed effect, which we refer to as worker productivity index, as it captures the per-
sistent component of the worker’s wage that is portable when switching jobs across
firms, net of the effect of firm-quality and time-varying worker’s characteristics.3

Figure 2 shows a statistically significant correlation between the worker produc-
tivity index estimated via the AKM model and EA-PGI (both standardized to have
mean 0 and standard deviation 1), but only for the tertiary-educated workers. For this
group, a one standard deviation increase in EA-PGI is associated with a 0.166 stan-
dard deviation higher worker productivity, compared to a 0.022 increase among the
secondary-educated individuals. Hence, the high-EA-PGI people tend to be highly
productive on the labor market (and therefore are on average paid higher wages), as
long as they obtain a tertiary education degree.

We further analyze whether the difference in slope coefficients between the two
education groups persists when adjusting for a gradually richer set of controls (ed-
ucation track, field, track-by-field, and school or university fixed effects). Although
the association between EA-PGI and worker productivity attenuates (Appendix Ta-
ble A.6), among the tertiary-educated workers it remains statistically significant, even
after adjusting for this extensive set of controls.

2.3 High EA-PGI individuals transition more rapidly and more frequently to higher-
quality firms.

We next investigate the role of firms in shaping income differences across levels of EA-
PGI among tertiary-educated individuals. Figure 3a shows that workers with higher
EA-PGI change employers slightly more frequently. To assess the quality dimension
of these moves, we use the AKM firm fixed effects (previously estimated along with
the workers’ fixed effects) standardized to have mean 0 and standard deviation 1. We
consider them as a firm quality index, since for each employer they capture the firm-
specific component of paid wage that is common to all workers at that firm, after
accounting for worker ability and observed characteristics. We use the firm quality
index to rank all firms in which workers in the sample are employed, and use this as
an outcome in our trajectories model.

Figure 3b shows that, on average, higher EA-PGI individuals transition to signif-
icantly higher-quality firms. Interestingly, the quality of their first employer is not

3The model controls for non-linear age and calendar time fully-interacted with education. Estima-
tion details are provided in Section 4.2 and descriptive statistics in Appendix Tables A.3 and A.4.
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Figure 2: Relationship between worker productivity and EA-PGI, by education group

Note: The vertical axis reports a worker productivity measure estimated via an AKM model (details
reported in Section 4.2); the horizontal axis reports ventiles of the EA-PGI distribution. The scatterplot
shows the relation between these two quantities standardized to have mean 0 and standard deviation 1
and after having residualized them with respect to gender, year of birth indicators, and first 10 genetic
principal components (PCs). The data used to obtain the plot is a cross-section of 55 435 individuals.
The lines correspond to sub-samples based on highest education achieved. The figure also reports
the estimated slopes (and standard errors in parentheses) from the corresponding linear regression of
worker productivity on EA-PGI controlling for gender, year of birth indicators and first ten genetic PCs.
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Figure 3: Employer quality and number of jobs since labor market entry

(a) Number of jobs since graduation

(b) Firm quality since graduation

Notes: Panel A plots the average number of employment spells over time since graduation at 10th and
90th percentiles of EA-PGI. Panel B plots the average firm quality index over time since graduation
at 10th and 90th percentiles of EA-PGI. Both are estimated from a regression of respective outcome
on EA-PGI fully interacted with indicators measuring years since graduation and controlling for first
ten genetic principal components, gender, year of birth, calendar year, and biobank indicators. The
estimation sample is restricted to tertiary-educated workers. The shaded areas correspond to 95% CIs.
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statistically different across the EA-PGI distribution, but the firm quality gap widens
as early as three years after graduation. This pattern suggests that individuals do not
initially self-select into higher- or lower-quality firms based on their EA-PGI, but sort-
ing by EA-PGI appears to begin early in the career, with higher EA-PGI individuals
progressively moving toward better-quality firms.

In contrast, among individuals with secondary education, firm quality trajectories
appear similar across EA-PGI levels (Appendix Figure A.5). Moreover, individuals
in the bottom decile of the EA-PGI distribution, regardless of whether they hold ter-
tiary or secondary education, exhibit strikingly similar mobility patterns with respect
to firm quality. These findings suggest that the higher income trajectories observed
among tertiary-educated individuals with high EA-PGI are largely driven by greater
access to higher-quality, higher-paying firms over time, rather than by difference in ed-
ucational attainment per se, initial labor market entry, or the frequency of employment
transitions alone.

2.4 Income growth disparities between high and low EA-PGI individuals are at-
tributable to differences in mobility across jobs.

To better understand the drivers of the income differences between EA-PGI groups,
we follow Hahn, Hyatt, and Janicki (2021) and decompose labor income changes be-
tween any two consecutive years since graduation into within-firm increases (stayers),
employer-to-employer mobility, and transitions into or out of unemployment. Fig-
ure 4 shows the contribution of the stayers and job-to-job movers components to the
cumulative log-income growth over time and by EA-PGI group, confirming that, on
average, both are associated with earnings gains over the life cycle. Details on the de-
composition are reported in Section 4.2, while Figure A.6 in Appendix shows all four
components (including transitions in and out of unemployment) and the correspond-
ing workers shares over time.

The right panel of Figure 4 shows that the contribution of between-firm mobility to
earnings growth becomes relatively more important over time for people at the 90th
percentile of EA-PGI compared to those at the 10th percentile. When comparing the
two EA-PGI groups, the gap in the job-to-job contribution to earnings growth cumu-
lated over 25 years is of about 0.1 log-points (approximately 10%). This suggests that
a substantial part of income divergence is driven by firm-to-firm mobility. Transitions
into and out of unemployment account for only a negligible share of the earnings
growth disparities across EA-PGI groups (Figure A.6).
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Figure 4: Decomposition of total cumulative growth in log(earnings)

Notes: the figure reports the results of the decomposition of total earnings growth to within-firm growth,
employer-to-employer switches, and mobility to/from non-employment. The figure shows the cumu-
lative contributions of within-firm earnings growth and earnings growth attributed to employer-to-
employer switches over time since graduation at first and tenth EA-PGI decile. The full decomposition
including growth attributed to exit to and entrance from non-employment is presented in Appendix
Figure A.6a. The decomposition is applied to log annual earnings and follows Hahn, Hyatt, and Janicki
(2021). The sample for the decomposition is restricted to tertiary-educated workers. 95% Confidence In-
tervals obtained via 500 block bootstrap iterations, where at each iteration we sample with re-immission
32 364 whole income histories from the pool of tertiary graduates.
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2.5 Parental EA-PGI, in particular that of fathers, predicts the income trajectories
of the tertiary-educated people

EA-PGI captures both direct genetic effects and indirect effects, such as environmen-
tally mediated influences from parental genetics (i.e., genetic nurture), as well as pop-
ulation stratification and assortative mating (Kong et al., 2018). Indeed, the people at
the 10th percentile of EA-PGI show remarkably lower socioeconomic status (parental
education) than those at the 90th percentile (Table A.5). To better isolate direct genetic
effects, we leverage parental genetic data. Specifically, we calculate maternal and pa-
ternal EA-PGI using SNIPAR (Young, Nehzati, Benonisdottir, et al., 2022) for 12 918
parent–offspring trios. Of these, 4587 were directly genotyped, while the remainder
were imputed based on 10 295 duos and 25 514 sibling pairs.4

Figure 5 presents the main results separately for secondary-educated (left panel)
and tertiary-educated individuals (right panel), comparing estimates with and with-
out parental EA-PGI controls. Among secondary-educated individuals, the income
gap across EA-PGI percentiles remains negligible, consistent with our earlier conclu-
sions. On the other hand, for the tertiary-educated individuals the parental EA-PGI
accounts for a meaningful share of the observed gap between the 90th and 10th per-
centiles of the offspring EA-PGI (Figures 5b vs. 5d). Following the approach outlined
in Table 1, we estimate that controlling for parental EA-PGI reduces this gap by ap-
proximately 71 % (see Appendix Table 2).5 Note that, as expected (and explicitly mod-
elled and analyzed in Rustichini et al., 2023), controlling for parental PGI-EA captures
outcome variation due to parental genetics, as well as family background characteris-
tics unevenly distributed across the EA-PGI groups (Table A.5).

2.6 EA-PGI is weakly associated with disease burden trajectories

Health is a well-documented determinant of education and income disparities (e.g.,
Pallesen et al., 2024; Newman, Gordon, and Mendes, 2025), which makes it a possi-
ble intermediate channel between EA-PGI and income. To examine whether the cor-
relation between EA-PGI and income is mediated by disease burden, we compute
the Charlson Comorbidity Index (CCI), which records the first occurrence of 17 major
chronic conditions over the life cycle (Charlson et al., 1987; Deyo, Cherkin, and Ciol,
1992). We then use it as an outcome in our trajectories model.

Figure 6 shows that the CCI is, on average, lower among individuals with tertiary
compared to secondary education, reflecting a well-established lower incidence of ma-

4We show that EA-PGI strongly predicts years of education. Consistent with previous findings
(e.g., Wang et al., 2021), the effect of offspring EA-PGI on years of education is attenuated but remains
significant once paternal and maternal EA-PGIs are included as controls; see Appendix Table A.7.

5Appendix Figure A.8 further indicates that paternal EA-PGI contributes more strongly to the in-
come difference between the 90th and 10th EA-PGI percentiles than maternal EA-PGI.
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Figure 5: Average annual income by EA-PGI level, over time and by education, un-
conditional an conditional on parental PGI

(a) Baseline without parental PGI (secondary) (b) Baseline without parental PGI (tertiary)

(c) Controlling for parental PGI (secondary) (d) Controlling for parental PGI (tertiary)

Notes: the figure plots average income trajectories over time since graduation at 10th and 90th per-
centiles of EA-PGI. Panels A and B plot baseline trajectories among secondary- and tertiary-educated
workers without controlling for parental EA-PGI. Panels C and D plot the trajectories among secondary-
and tertiary-educated workers after controlling for parental EA-PGI fully interacted with time since
graduation. The trajectories are estimated from a regression of annual earnings on EA-PGI fully inter-
acted with indicators measuring years since graduation and controlling for first ten genetic principal
components, gender, year of birth, calendar year, and biobank indicators. The estimation sample is re-
stricted to 12 918 parent-offspring trios (directly genotyped and imputed). The shaded areas correspond
to 95% CIs.
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Table 2: Cumulative lifetime income by EA-PGI percentiles, controlling for parental
EA-PGI

Dependent variable: cumulated income

Baseline Controlling for parental PGI

Pooled Secondary Tertiary Pooled Secondary Tertiary

EA-PGI percentiles
10th 295 529 265 504 325 772 303 711 259 965 339 170

(2 574) (2 785) (4 018) (3 910) (4 625) (5 695)
20th 301 655 262 058 332 736 307 013 258 352 341 423

(2 026) (2 229) (3 161) (2 856) (3 324) (4 187)
30th 306 025 259 599 337 704 309 369 257 202 343 030

(1 760) (2 023) (2 680) (2 214) (2 572) (3 238)
40th 309 751 257 502 341 940 311 378 256 221 344 401

(1 661) (2 017) (2 413) (1 827) (2 184) (2 612)
50th 313 091 255 624 345 736 313 178 255 342 345 629

(1 693) (2 149) (2 328) (1 697) (2 153) (2 321)
60th 316 614 253 641 349 742 315 077 254 414 346 925

(1 842) (2 404) (2 413) (1 834) (2 459) (2 399)
70th 320 400 251 511 354 046 317 118 253 417 348 318

(2 107) (2 775) (2 685) (2 235) (3 056) (2 883)
80th 325 022 248 911 359 300 319 610 252 200 350 018

(2 528) (3 313) (3 200) (2 922) (3 982) (3 803)
90th 330 882 245 615 365 961 322 768 250 658 352 173

(3 150) (4 076) (4 024) (3 936) (5 297) (5 201)

Obs. 12 871 5 063 7 808 12 871 5 063 7 808

Notes: The table reports adjusted lifetime income (up to 25 years since graduation) by
EA-PGI percentiles. Average lifetime income adjusted by regressing cumulated income
on EA-PGI controlling for first ten genetic principal components, gender, year of birth,
calendar year, and biobank indicators. The first three columns replicate the baseline es-
timation without including parental EA-PGI in the subsample of family trios. The sec-
ond three columns control for both parents’ EA-PGI. Income discounted to obtain its net
present value upon graduation (see Section 4.2 for additional information). Standard er-
rors reported in parentheses.
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jor chronic diseases among high-educated individuals (Agardh et al., 2011; Tillmann et
al., 2017; Vaccarella et al., 2023). Consistent with this pattern, Figure 6 further indicates
that higher EA-PGI is significantly associated with a lower cumulative disease burden
as measured by the CCI. Importantly, the extent of this association between EA-PGI
and CCI is very similar across both education groups. This suggests that the associa-
tion between EA-PGI and income observed only among tertiary-educated individuals,
is not directly explained by increased differences in disease burden.

Figure 6: Average health indices by EA-PGI levels, over time and by education

(a) Secondary (b) Tertiary

Notes: the figure plots average Charlson Comorbidity Index over time since graduation at 10th and 90th
percentiles of EA-PGI. Panels A and B report the results for secondary- and tertiary-educated workers,
respectively. The trajectories are estimated from a regression of the Charlson Comorbidity Index on
EA-PGI fully interacted with indicators measuring years since graduation and controlling for first ten
genetic principal components, gender, year of birth, calendar year, and biobank indicators. The shaded
areas correspond to 95% CIs.

14



3 Discussion

In the first part of the analysis we focus on the labor income component of socioe-
conomic status, following individuals annually from the year of graduation through
1987–2019. The analysis of labor income since graduation is a central contribution of
this paper, motivated by the fact that, while interpersonal differences can be deter-
mined as early as in utero (Almond and Currie, 2011), graduation constitutes a pivotal
stage at which inequalities begin to materialize in life (von Wachter, 2020).

Our focus on labor income is motivated by the fact that it is a well-defined, down-
stream measure of socioeconomic status that reflects differences in genetic endow-
ments, educational attainment, health, and skills. As opposed to inheritances, labor
income (along with government transfers) accounts for the lion’s share of the mone-
tary inflows that people accumulate during lifetime, making it a fundamental com-
ponent of wealth (Black et al., 2025). In addition, income inequality is a central and
active research area in economics (see Kline, 2024 for a review), allowing us to build
on well-established methodologies while incorporating genetic endowments into the
same analytical framework. Finally, income is strongly correlated with health, which
is the other primary component of socioeconomic status and additional outcome in
our analysis.

Our analysis starts by examining how genetic endowments predictive of educa-
tional attainment shape income trajectories over the life course. A first notable result
is that workers earn similar income upon labor market entry, irrespective of their EA-
PGI level. After labor market entry, and only for the tertiary-educated people, the
income differences between workers at the 90th and 10th percentile of EA-PGI keep
widening up over time, resulting in an income gap cumulated over the 25 years since
graduation of 13.2 %. The similar income levels upon entry followed by the observed
divergence is consistent with an initial lack of worker’s sorting according to ability,
followed by relatively quick employer learning about worker’s productivity (Farber
and Gibbons, 1996).

The fact that EA-PGI explains only the income trajectories of the tertiary-educated
people reflects a combination of two forces. People with relatively high EA-PGI ex-
perience higher economic returns to ability in certain sectors and occupations that are
accessed via tertiary education degrees. At the same time, they sort into different ed-
ucation tracks and levels based on EA-PGI itself. While we cannot quantify exactly
the relative importance of the two channels (sorting and economic returns to higher
EA-PGI), our analysis based on the AKM model estimation (Abowd, Kramarz, and
Margolis, 1999) offers additional insights on the role of employers in explaining the
observed income differences.

As a starting point, we show that a measure of labor market productivity (or abil-
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ity) is indeed positively associated with EA-PGI, but again only for tertiary-educated
workers. This association persists even after controlling for detailed education-related
mediating factors (education field, track, and institution id). The fact that EA-PGI
relates to labor market productivity only for the higher-educated people raises the
question of whether some of the high-ability people with secondary education should
be encouraged (or economically supported) to continue into tertiary education. This
project does not allow us to answer this question, but we note that the answer should
necessarily take into account the socioeconomic background of pupils (see Ichino, Rus-
tichini, and Zanella, 2024). We return to the importance of family background later.

Our analysis also shows that there is little evidence of sorting into the first em-
ployer on the basis of EA-PGI. This is consistent with labor market entrants having
limited information about firm and match quality, and with firms similarly knowing
little about the productivity of new hires. Despite the absence of initial sorting, ge-
netic endowments subsequently matter for transitions to higher-paying employers,
indicating that employer learning about workers’ productivity and job mobility are
important channels underlying the genetic gradient in income. Consistent with this,
we observe significantly steeper firm-quality trajectories among workers at the 90th
EA-PGI percentile, whereas those at the 10th percentile exhibit flat employer-quality
profiles. While these results partly reflect sorting into better occupations, occupational
choice alone is unlikely to capture the income gains driven by the (much more granu-
lar) differences in employer quality that we show. This is because of the typically large
variation of firm quality within occupations (e.g., Card, Heining, and Kline, 2013).

By Mendel’s laws, parents of children with higher EA-PGI must have higher EA-
PGI themselves, which results in higher parental education. This is confirmed in our
sample, where people at the 10th percentile of EA-PGI show remarkably lower socioe-
conomic status than those at the 90th percentile (Table A.5), a pattern that can be ex-
acerbated by assortative mating.6 We therefore examine the role of parental EA-PGIs
in accounting for the observed income gap across offspring’s EA-PGI levels. This ap-
proach isolates the direct genetic contribution to income by netting out indirect genet-
ics and environmental channels. Controlling for parental EA-PGI reduces the income
gap by approximately 71 %, indicating that indirect effects play an important role in
shaping income development.

Interestingly, large part of the EA-PGI channel is explained by fathers’ EA-PGI
(rather than mothers’). This is consistent with maternal resources (such as active time
spent with the child) being more relevant for early childhood development, whereas
parental resources in the form of income (more often provided by fathers) tend to be
more important at the later stages of development that we focus on in our analysis

6See Rustichini et al. (2023) for similar empirical patterns and for a theoretical framework of parental
investments and intergenerational mobility that embeds a genetic analysis of skill transmission.
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(e.g., Del Boca, Flinn, and Wiswall, 2014).
Finally, when we examine whether health constitutes an intermediate channel link-

ing EA-PGI to income, we find that the association of a cumulative disease-burden
index with EA-PGI is similar across education groups. This uggests that health is un-
likely to mediate the strong EA-PGI–income relationship.

This paper contributes to a growing literature at the intersection of economics and
human genetics that seeks to understand how nature and nurture jointly determine
human differences and socioeconomic inequality. Existing cross-sectional studies in
this field typically rely on outcomes that either lack income information altogether
or use self-reported measures, which are subject to measurement error and bias. To
the best of our knowledge, this is the first study to analyze income trajectories using
register-based data that link individuals to employers over time through a matched
employer-employee structure. The employer-employee link and repeated measure-
ments over time allow us to decompose how firm- and worker-level factors account
for interpersonal income differences due to genetics. In doing so, we builds a novel
bridge with the modern economics literature on income inequality (Card et al., 2018;
Song et al., 2018; Kline, 2024).

Taken together, our results suggest that genetic potential is most strongly expressed
among tertiary-educated people – particularly those with an academic track degree –
through labor market transitions towards higher-quality employers. These employ-
ers pay on average high wages, thereby contributing to the income inequality along
genetics documented in the income analysis. Our results also show that indirect ge-
netic effects and parental background explain a relevant part of the effect of EA-PGI
on income.

4 Data and Methods

4.1 Data Sources

Genetic data. The genotyped sample was obtained from Finnish biobanks and con-
sists of individuals who provided consent for research use of their blood samples.
Participants in our dataset were drawn from several population-based epidemiologi-
cal cohorts: 27 135 from the THL and 24 600 from the Blood Donor study.

To quantify the genetic contribution to educational attainment, we constructed a
polygenic index for years of education (EA-PGI) based on the largest genome-wide
association study of educational attainment to date (Okbay et al., 2022), excluding
Finnish cohorts to avoid overfitting. In our analysis sample, the PGI explained 7.1 %7

7Computed as incremental R2, following Okbay et al. (2022), and controlling for gender, year of
birth and first 10 genetic principal components
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of the variance in years of education—slightly lower than estimates from previous
studies Lee, Wedow, Okbay, et al., 2018, possibly due to differences in cohort compo-
sition or educational classification.

On average, our sample appears to be positively selected (younger, better edu-
cated, with a higher share of women) compared to the population of fresh graduates.
To analyze whether sample composition is a likely driver of our results, we apply an
inverse probability weighting approach to make the sample representative of the pop-
ulation of labor market entrants (see e.g. Davies et al., 2018). Supplementary Table A.2
provides details on the re-weighting procedure and shows that it is effective in making
the sample representative of the general population along the central dimensions that
are initially unbalanced (including entry income, which we do not re-weight in our
routine). Using these weights when estimating the income trajectories yields results
that are qualitatively very similar to those in our main analysis, both when using the
full genotyped sample and when using the family trios (Supplementary Table A.9).

Register data. We link the genotyped data to administrative registers from Statistics
Finland (FOLK databases), covering the years 1987–2019. In addition, we utilize these
register data independently, as they include the entire population of individuals per-
manently residing in Finland at the end of each year. The registers provide detailed
information on employment histories, which allows us to identify the main employer
at the end of each calendar year. They also contain annual total income and income
by source (labor income, capital income, and income transfers and benefits). We in-
clude people with zero income in the income analysis, thereby avoiding conditioning
on employment. All monetary values are deflated to 2010 EUR.

The registers further include demographic variables (gender, year of birth) and de-
tailed educational information (highest degree, 2-digit field, vocational vs. academic
track). Occupation codes (4-digit) are available annually from 2004 and industry codes
from 1987. Both have been harmonized for consistency over time, using official lookup
tables provided by the Statistics Finland.

Health registers. Health outcomes are obtained from two nationwide registers main-
tained by the Finnish Institute for Health and Welfare: the Care Register for Health
Care (Hilmo) and the Register of Primary Health Care Visits (Avohilmo). In this study,
Hilmo covers inpatient visits, operations, and specialized outpatient visits for the pe-
riod to 1987–2024, when diagnoses follow ICD-9 and ICD-10 coding. Avohilmo, which
uses ICD-10, covers primary care outpatient visits since 2011. For individuals absent
from Hilmo, Avohilmo is used used to complement the coverage. Both registers con-
tain patient identifiers, care episode details, and one or more discharge diagnoses.
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4.2 Methods

Polygenic Indices

We construct polygenic indices (PGIs) by aggregating single nucleotide polymorphisms
(SNPs), common genetic variants identified in Genome-Wide Association Studies (GWAS)
as predictive of years of education and health-related outcomes (see e.g. Biroli et al.,
2025). SNPs are linearly combined using GWAS-derived effect sizes as weights, pro-
ducing out-of-sample PGIs predictive of each trait of interest.

Our primary measure is the PGI for educational attainment (EA-PGI), standardized
to mean zero and unit variance. Its distribution across education groups is shown in
Appendix Figure A.1. To control for ancestry and population stratification, we com-
pute the first 10 principal components of the genetic data and include them as covari-
ates in all analyses that do not control for parental genetics.

Worker Ability and Firm Quality Measurement

To operationalize worker ability (or labor market productivity) θi, and firm quality ψJ

we estimate an Abowd, Kramarz, and Margolis (1999) (AKM) model (Kline, 2024):

yit = Xitβ + ψJ(i,t) + θi + εit (1)

where yit denotes log monthly labor income8 for individual i in year t; Xit includes
education fully interacted with calendar year and cubic age polynomial; ψJ(i,t) rep-
resents firm fixed effects; and θi are worker fixed effects. Estimated θ̂i provides a
measure of worker ability (unobserved heterogeneity) and ψ̂J(i,t) offers firm-specific
wage premia, interpreted as firm quality. The estimated fixed effects are interpretable
in relative terms: workers with higher fixed effects earn more across firms relative to
others, holding observables constant. Similarly, firms with higher AKM fixed effects
pay higher average wages, consistent with higher productivity serving as a proxy firm
quality, as they capture persistent wage differences across firms after accounting for
worker characteristics.

Except for the additive separability of firm and worker fixed effects, no functional
form assumptions are made on either of the fixed effects, which are estimated non
parametrically. The estimation sample includes all full-time employees aged 20–60.
For multiple employment spells, the main employer is defined as the highest-paying
ongoing job at year-end. To ensure labor market attachment, we restrict to workers
earning at least 50% of the national median monthly income. Employment spells in

8The outcome in (1) is monthly income, defined as annual earnings divided by number of months
worked. Results are robust to using hourly wages derived from the Structure of Earnings Register (SES),
which covers the whole public sector and a sample of about half of the private sector. To maximize
sample size and coverage, we use monthly earnings as our baseline income measure.
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very small firms (<5 employees) or shorter than four months are excluded. The result-
ing panel comprises 3.7 million workers, 31.6 million person-year observations, and
177.0 thousand firms. The AKM estimation is performed separately for two periods
(1987–2003 and 2004–2019) due to computational constraints. Correlations of worker
and firm fixed effects across the two periods are reasonably high (Figure A.10).

We summarize worker and firm fixed effects (e.g., by percentiles) and link them to
the genotyped sample. Appendix A Tables A.3 and A.4 provide summary statistics
for the sample used in estimating AKM, and standard statistics and income variance
decomposition following AKM estimations.

Income Trajectory Model

To study how genetic predispositions affect income over the life cycle, we estimate:

yicmt = α + τc + τm + βtPGIi + γXi + εicmt (2)

where yicmt is total annual income of individual i, in birth cohort c, calendar year
m, and number of years since graduation t. PGIi is standardised EA-PGI; τc and τm are
cohort and year effects; and Xi includes gender, ten genetic principal components and
biobank indicator (THL or Blood Donors). The coefficients of interest are βt, which
capture the income differential for EA-PGI over time since graduation either from sec-
ondary or tertiary education. Since PGIs are randomly assigned at conception, βt has a
causal interpretation, conditional on adequate control for population stratification via
Xi. Residual stratification may remain, which would lead the coefficients to capture
a compound effect of own genetics and other environmental factors. While assign-
ing sign to the bias is not immediate, we believe that it is reasonable to consider our
estimates as conservative lower bounds of true causal effects of own EA-PGI.9

For graphical results and in our baseline analysis, we present average income tra-
jectories evaluated at 10th and 90th percentiles of EA-PGI distribution. We also present
main figure with categorical deciles of EA-PGI in Appendix Figure A.2, which is vi-
sually consistent with linear effect of EA-PGI. When computing cumulated lifetime
income in the tables and text, we discount income by the a 3% interest rate, therefore
computing its net present value upon graduation. In the computation, we sum over
all income rows (including zeros) between graduation year and up to 25 years later.

Income decomposition by EA-PGI group and over time since graduation

We implement the approach by Hahn, Hyatt, and Janicki (2021) to decompose the log-
income growth separately by EA-PGI group (10th and 90th percentiles).

9The PGI captures only the contribution of common genetic variants identified in external GWAS,
not the full genetic architecture of education.
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Each year since graduation t, workers are partitioned into one of four groups: stay-
ers (workers who stay with the same employer); employer-to-employer transitions (work-
ers who change firm); entrants from non-employment (hires from nonemployment); ex-
iters to non-employment (incumbent workers separating to nonemployment). The aver-
age income growth between t − 1 and t is decomposed into four weighted contribu-
tions based on the four worker types (weighted by the share of workers in each worker
type). Since entrants and exiters move between employment and non-employment,
their contribution is obtained by comparing their average income to that of the work-
ers who are continuously employed in the time period.

In line with Hahn, Hyatt, and Janicki (2021), and confirmed by our analysis, job-to-
job movers’ transitions are associated with large earnings gains for individuals. More-
over, the entrants from nonemployment earn substantially less than the continuously-
employed workers to which their salary is compared to. Hence, their entry into em-
ployment lessens (subtracts from) the average earnings and their contribution to the
average earnings growth is negative. The opposite occurs for exiters to nonemploy-
ment: they also tend to earn less than the continuously-employed workers, but be-
cause these low-paying jobs dissolve, this contributes positively to the earnings growth.

We present results by cumulating the income growth components over t = 1, ..., 25.

Charlson Comorbidity Index

The Charlson Comorbidity Index (CCI) (Charlson et al., 1987; Deyo, Cherkin, and Ciol,
1992) assigns fixed weights to comorbid conditions associated with higher mortality
risk. The index is the weighted sum of an individual’s comorbidities, with weights
derived from Cox regression models.

We compute CCI scores using the ICCI R package (Detrois, 2024), which imple-
ments the ICD-9 and ICD-10 coding (Quan et al., 2005) via the comorbidity package
by Gasparini (2018).10 For each individual, we compute cumulative CCI scores by age,
recalculating the index at successive cutoffs (0–19, 0–20, . . . , up to 0–50 years).

Definitions and Sample Restrictions. For the trajectory-based analyses, we con-
struct a panel of all genotyped adults with either secondary or tertiary qualification,
followed from year of graduation onward between 1987 and 2019. To ensure that in-
dividuals in our sample have completed their education phase, we remove those with
secondary degree that have not been observed past age 30; people that obtain tertiary
degree before age 30 are retained in the sample. The final sample includes 51 736 indi-
viduals and 972 917 person-year observations (see Table A.1).

10The package accommodates multiple ICD versions. Source code: ICCI GitHub repository.
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A Appendix

A.1 Additional figures

Figure A.1: Density of the EA-PGI by highest education level and track

Notes: density plot of EA-PGI in the working sample by highest education level and track.
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Figure A.2: Average earnings post graduation for tertiary educated by EA-PGI deciles

Notes: the figure plots predictive margins of average annual income (in 2010 EUR) by age. The differ-
ent lines correspond to deciles of the EA-PGI. Average income is estimated following the regression of
average annual income on EA-PGI deciles fully interacted with indicators measuring years since grad-
uation and controlling for first ten genetic principal components, gender, year of birth, calendar year,
and biobank indicators. The shaded areas correspond to 95% CI.
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Figure A.3: Share of entry workers in each quartile of firm quality, by EA-PGI decile

(a) Secondary

(b) Tertiary

Notes: the figure plots shares of workers by quartiles of the firm quality index of the first firm in indi-
vidual’s employment history. The shares are plotted across deciles of EA-PGI distribution. Panels A
and B report the relative shares among secondary- and tertiary-educated workers, respectively.
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Figure A.4: Any change in employer since first job

Notes: the figure plots average share of workers that switch employers at least once over time since
graduation. The lines correspond to 10th and 90th EA-PGI percentiles. The first panel shows the av-
erage mobility patterns in the full sample, while other panels are restricted to secondary- and tertiary-
educated workers, respectively. The average shares are computed from regressions of the indicator of
having ever swtiched an employer on EA-PGI fully interacted with indicators measuring years since
graduation and controlling for first ten genetic principal components, gender, year of birth, calendar
year, and biobank indicators. The shaded areas correspond to 95% CIs.
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Figure A.5: Employer quality and number of jobs since labor market entry among
secondary-educated workers

(a) Firm quality since labor market entry

(b) Number of jobs since labor market entry

Notes: Panel A plots the average firm quality index over time since gradution at 10th and 90th per-
centiles of EA-PGI. Panel B plots the average number of employment spells over time since graduation
at 10th and 90th percentiles of EA-PGI. Both are estimated from a regression of respective outcome on
EA-PGI fully interacted with indicators measuring years since graduation and controlling for first ten
genetic principal components, gender, year of birth, calendar year, and biobank indicators. The estima-
tion sample is restricted to secondary-educated workers. The shaded areas correspond to 95% CIs.
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Figure A.6: Decomposition of total cumulative growth in log(earnings) and group-
specific employment shares

(a) Cumulative contribution to log(earnings) growth

(b) Employment share

Notes: the figure reports the results of the decomposition of total earnings growth to within-firm growth,
employer-to-employer switches, and mobility to/from non-employment. Panel A reports the cumula-
tive contributions of each channel to to the total earnings growth over time since graduation at first and
tenth EA-PGI decile. Panel B reports average employment shares of each type of workers over time
and by EA-PGI deciles. The decomposition is applied to log annual earnings and follows the algorithm
in Hahn, Hyatt, and Janicki, 2021. The sample for the decomposition is restricted to tertiary-educated
workers.
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Figure A.7: Average health indices by EA-PGI percentiles over time and by education
after controlling for parental EA-PGI

(a) Pooled (b) Secondary (c) Tertiary

Notes: the figure plots average health indices over time since graduation. The lines correspond to 10th
and 90th percentiles of offspring EA-PGI. Panel A uses full sample of workers, while Panels B and C are
restricted to secondary- and tertiary-educated workers, respectively. The estimates are obtained from a
regression of Charlson Comorbidity Index on offspring, paternal and maternal EA-PGI fully interacted
with indicators measuring years since graduation and controlling for first ten genetic principal compo-
nents, gender, year of birth, calendar year, and biobank indicators. The estimation sample is restricted
to 12 918 parent-offspring trios (directly genotyped and imputed). The shaded areas correspond to 95%
CIs.

Figure A.8: Average annual income by own or parental EA-PGI percentiles over time

(a) Own EA-PGI (b) Father EA-PGI (c) Mother EA-PGI

Notes: the figure plots average annual income over time since graduation. The lines in panel A corre-
spond to 10th and 90th percentiles of offspring EA-PGI; in panel B - 10th and 90th percentiles of paternal
EA-PGI; in panel C - 10th and 90th percentiles of maternal EA-PGI. The estimates are computed from
regression of annual income on own, paternal and maternal EA-PGI fully interacted with indicators
measuring years since graduation and controlling for first ten genetic principal components, gender,
year of birth, calendar year, and biobank indicators. The estimation sample is restricted to tertiary-
educated workers. The shaded areas correspond to 95% CIs.
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Figure A.9: Average annual income by own or parental EA-PGI percentiles and gender

Notes: the figure plots average income evaluated at 10th and 90th percentiles of either own or parents’
EA-PGI by index person’s gender over time. The figure is based on the regression of annual income on
own and parents’ EA-PGI fully interacted with time and gender. The estimation sample is restricted to
tertiary-educated workers. The estimation additionally controls for first ten genetic principal compo-
nents, year of birth, calendar year and biobank indicators. The shaded areas correspond to 95% CI.

Figure A.10: Binscatter plot of AKM worker productivity and firm quality indices
between two estimation periods (1987-2003 and 2004-2019)

(a) Worker productivity indices (b) Firm quality indices

Notes: Panel A is a binscatter plot of worker productivity indices estimated using matched employer-
employee data between 2004-2019 (on the y axis) and 1987-2003 (on the x axis). Similarly, Panel B is a
binscatter plot of firm quality indices estimated using matched employer-employee data between 2004-
2019 (on the y axis) and 1987-2003 (on the x axis). The dashed black lines correspond to 45◦ line. The
sample in Panel A are workers observed in both periods; in Panel B - firms observed in both periods.
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A.2 Additional tables

Table A.1: Working sample in trajectory analysis

Person-year observations Unique individuals
All THL BDB All THL BDB

Start 5,374,521 3,963,254 1,411,267 176,523 132,171 44,352
Keep graduates only 3,248,655 1,957,308 1,291,347 100,016 59,416 40,600
Keep graduates with non-missing graduation year 3,248,655 1,957,308 1,291,347 100,016 59,416 40,600
Graduated between 1970 and 2020 3,173,023 1,882,118 1,290,905 97,390 56,803 40,587
Observed between 0 and 25 years since graduation 1,707,370 1,065,113 642,257 97,369 56,786 40,583
Followed from 0 years since graduation 1,011,416 576,894 434,522 58,904 29,205 29,699
Followed at least up to age 30 (if secondary) 972,897 567,236 405,661 51,735 27,135 24,600
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Table A.2: Average population and sample characteristics of graduates

(a) Genotyped sample

Population Genotyped sample Reweighted sample ∆(1)
(2) ∆(1)

(3) N(1) N(2)

(1) (2) (3) (4) (5) (6) (7)

Cohort: 1950-59 0.01 0.01 0.01 0.000 1.000 1,599,341 51,735
Cohort: 1960-69 0.17 0.22 0.16 0.000 1.000 1,599,341 51,735
Cohort: 1970-79 0.34 0.36 0.34 0.000 1.000 1,599,341 51,735
Cohort: 1980-89 0.36 0.29 0.37 0.000 1.000 1,599,341 51,735
Cohort: 1990-99 0.13 0.12 0.13 0.000 1.000 1,599,341 51,735
Graduation age: 16-20 0.36 0.31 0.36 0.000 1.000 1,599,341 51,735
Graduation age: 21-25 0.39 0.43 0.39 0.000 1.000 1,599,341 51,735
Graduation age: 26-30 0.25 0.25 0.24 0.001 1.000 1,599,341 51,735
Education: secondary 0.44 0.37 0.44 0.000 1.000 1,599,341 51,735
Education: tertiary 0.56 0.63 0.56 0.000 1.000 1,599,341 51,735
Male 0.48 0.39 0.48 0.000 1.000 1,599,341 51,735
Married 0.10 0.13 0.11 0.000 0.000 1,599,341 51,735
Rural 0.24 0.24 0.25 0.966 1.000 1,599,341 51,735
Income at t=0 9,301 9,523 9,327 0.000 1.000 1,599,341 51,735

Notes: Average characteristics measured in year of graduation in the population of graduates (1) and sample of genotyped graduates
used in the analysis (2). The population of graduates is selected with similar criteria described in Table A.1. Column (3) shows average
characteristics after having rebalanced the sample according to: year of birth and graduation year (fully interacted with highest education
level and gender), and rural area indicator fully interacted with gender. Column (4) reports p-values for the equality of means between
population and genotyped sample, while column (5) does so for the population vs. reweighted sample comparison. All p-values are adjusted
for multiple hypotheses testing via Holm correction. Columns (6) and (7) report population and genotyped sample counts, respectively.

(b) Family trio sample

Population Genotyped family trios Reweighted family trios ∆(1)
(2) ∆(1)

(3) N(1) N(2)

(1) (2) (3) (4) (5) (6) (7)

Cohort: 1950-59 0.01 0.01 0.01 0.830 1.000 1,599,341 12,918
Cohort: 1960-69 0.17 0.15 0.17 0.002 1.000 1,599,341 12,918
Cohort: 1970-79 0.34 0.35 0.34 0.048 1.000 1,599,341 12,918
Cohort: 1980-89 0.36 0.38 0.36 0.000 1.000 1,599,341 12,918
Cohort: 1990-99 0.13 0.11 0.12 0.000 1.000 1,599,341 12,918
Graduation age: 16-20 0.36 0.34 0.36 0.000 1.000 1,599,341 12,918
Graduation age: 21-25 0.39 0.42 0.40 0.000 1.000 1,599,341 12,918
Graduation age: 26-30 0.25 0.24 0.24 0.132 1.000 1,599,341 12,918
Education: secondary 0.44 0.39 0.44 0.000 1.000 1,599,341 12,918
Education: tertiary 0.56 0.61 0.56 0.000 1.000 1,599,341 12,918
Male 0.48 0.40 0.48 0.000 1.000 1,599,341 12,918
Married 0.10 0.12 0.12 0.000 1.000 1,599,341 12,918
Rural 0.24 0.27 0.24 0.000 1.000 1,599,341 12,918
Income at t=0 9,301 9,788 9,560 0.000 1.000 1,599,341 12,918

Notes: Average characteristics measured in year of graduation in the population of graduates (1) and sample of genotyped family trio graduates used
in the analysis (2). The population of graduates is selected with similar criteria described in Table A.1. Column (3) shows average characteristics after
having rebalanced the sample according to: year of birth and graduation year (fully interacted with highest education level and gender), and rural
area indicator fully interacted with gender. Column (4) reports p-values for the equality of means between population and genotyped family trio
sample, while column (5) does so for the population vs. reweighted sample comparison. All p-values are adjusted for multiple hypotheses testing via
Holm correction. Columns (6) and (7) report population and genotyped family trio sample counts, respectively.
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Table A.3: Summary statistics in FOLK-based AKM sample

Mean SD N

Cohort: 1946-1955 0.231 0.421 7,225,843
Cohort: 1956-1965 0.299 0.458 9,379,633
Cohort: 1966-1975 0.240 0.427 7,504,156
Cohort: 1976-1985 0.162 0.369 5,086,257
Cohort: 1986-1995 0.064 0.245 2,010,473
Cohort: 1996-2005 0.004 0.062 121,624
Age group: 20-29 0.200 0.400 6,875,154
Age group: 30-39 0.288 0.453 9,929,190
Age group: 40-49 0.288 0.453 9,926,283
Age group: 50-59 0.212 0.409 7,306,357
Age group: 60-69 0.011 0.106 391,987
Male 0.604 0.489 34,428,971
Education level: Compulsory 0.212 0.409 7,314,987
Education level: Secondary 0.447 0.497 15,406,896
Education level: Tertiary 0.340 0.474 11,707,088
Firm size 1,690 4,283 34,428,971
Annual total earning, 2015 EUR 27,319 30,515 34,428,936
Months worked in a year 11.680 1.241 34,428,971
Monthly total earning, 2015 EUR 2,330 2,585 34,428,936
psi 0.365 0.771 15,699,075
theta 0.122 0.990 16,162,338

Notes: the table reports summary statistics in FOLK-based
matched employee-employer panel used in AKM estimation.
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Table A.4: AKM summary statistics and variance decomposition

Dependent variable: log monthly earnings

1987-2003 2004-2019

Standard deviation of outcome 0.5003 0.4614
N largest connected set 16 862 428 15 435 023
N singletons 275 680 374 028
N estimation sample 16 586 748 15 060 995
Panel A: Summary of parameter estimates

N worker FE 1 881 715 1 842 564
N firm FE 126 605 50 430
Std. dev. of worker FE 0.2969 0.3208
Std. dev. of firm FE 0.1067 0.1027
Std. dev. of Xb 0.3416 0.2437
Std. dev. of residual 0.1587 0.1561
Corr(worker FE, firm FE) 0.1054 0.2496
RMSE 0.1693 0.1669
Adjusted R2 0.8846 0.8681

Panel B: Share of outcome variance attributed to
Worker FE 0.3547 0.4868
Firm FE 0.0458 0.0499
Cov(worker FE, firm FE) 0.0269 0.0778
Xb and associated covariances 0.4712 0.2703
Residual 0.1014 0.1153

Notes: the table reports summary statistics and variance decomposition following AKM es-
timations in FOLK-based matched employee-employer panel. The dependent variable is
log monthly earnings calculated as the ratio of total annual earnings by number of months
worked. The sample includes employees aged between 20 and 60, with monthly earnings
above 50% of yearly median, working in firms with at least 10 workers and for at least 4
months in a calendar year. The estimations control for calendar year indicators, education
level, cubic polynomial in age, as well as interactions of calendar year and age polynomial
with education level.
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Table A.5: Descriptive statistics by EA-PGI deciles

Sample means Diff.

1st decile 2nd-9th deciles 10th decile 2nd-9th deciles 10th decile

Male 0.267 0.341 0.402 0.074*** (0.011) 0.135*** (0.013) 32,364
Birth year 1977.2 1977.3 1977.6 0.170 (0.231) 0.455 (0.272) 32,364
Mother edu: compulsory 0.332 0.250 0.175 -0.082*** (0.010) -0.157*** (0.012) 32,364
Mother edu: secondary 0.413 0.355 0.258 -0.059*** (0.011) -0.155*** (0.013) 32,364
Mother edu: tertiary 0.247 0.386 0.554 0.139*** (0.011) 0.307*** (0.013) 32,364
Mother edu: missing 0.008 0.009 0.012 0.001 (0.002) 0.005 (0.003) 32,364
Father edu: compulsory 0.351 0.278 0.196 -0.073*** (0.010) -0.155*** (0.012) 32,364
Father edu: secondary 0.388 0.314 0.218 -0.074*** (0.011) -0.170*** (0.012) 32,364
Father edu: tertiary 0.220 0.366 0.551 0.147*** (0.011) 0.332*** (0.013) 32,364
Father edu: missing 0.042 0.042 0.035 0.001 (0.005) -0.007 (0.005) 32,364
Age at graduation 24.506 24.854 25.245 0.349*** (0.054) 0.740*** (0.063) 32,364
Graduation: years since predicted graduation 2.256 2.211 2.126 -0.045 (0.049) -0.131* (0.058) 32,364
Age at first job 26.332 26.448 26.739 0.116 (0.072) 0.407*** (0.085) 31,015
First job: years since predicted graduation 3.588 3.302 3.092 -0.286*** (0.071) -0.496*** (0.084) 31,015
Annual average income at first job 11,729 12,811 14,208 1,082*** (242) 2,478*** (285) 32,364
AKM firm FE of first job 0.217 0.236 0.268 0.019 (0.022) 0.052* (0.026) 16,860
AKM firm FE at t=15 0.407 0.462 0.527 0.055 (0.035) 0.120** (0.043) 8,004

Notes: the table reports descriptive statistics among tertiary-educated individuals observed in trajectory panel by deciles of EA-PGI. The first three
columns report estimated sample means and standard error of mean in parentheses in each EA-PGI decile group. The next two columns report
estimated differences of sample means in 2nd–9th and 10th deciles relative to 1st decile, as well as standard error of difference estimate in parentheses.
The last column reports total sample count for each variable considered. All estimates control for first 10 genetic PCs. All estimates are unweighted.
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Table A.6: Worker productivity and EA-PGI

Dependent variable: Std AKM worker FE
(1) (2) (3) (4)

Compulsory × Std EA-PGI 0.044∗∗∗ 0.044∗∗∗ 0.044∗∗∗ 0.044∗∗∗

(0.007) (0.006) (0.006) (0.006)
Secondary × Std EA-PGI 0.022∗∗∗ 0.017∗∗∗ 0.015∗∗ 0.012∗

(0.005) (0.005) (0.005) (0.005)
Tertiary × Std EA-PGI 0.166∗∗∗ 0.111∗∗∗ 0.105∗∗∗ 0.052∗∗∗

(0.005) (0.005) (0.005) (0.005)

Level Yes Yes Yes Yes
Field No Yes Yes Yes
Level × Field No No Yes No
Institution ID No No No Yes

Obs. 84,854 73,451 73,447 73,307
Avg. obs. per cell 28284.667 734.510 292.618 46.633
Adj R2 0.056 0.095 0.103 0.154
RMSE 0.852 0.778 0.774 0.752
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: the table reports estimation results of worker FEs on EA-PGI of workers by ed-
ucation level. All regressions control for first 10 genetic PCs, gender, year of birth and
calendar year indicators. Furthermore, the columns gradually add controls for educa-
tion level, field and institution ID, as well as their interactions. All estimations are un-
weighted. Standard errors are reported in parentheses.
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Table A.7: Years of education and EA-PGI with and without parental EA-PGI

Dependent var: predicted years of education

All family trios Directly genotyped trios

Baseline without parental EA-PGI
Own EA-PGI 0.283*** 0.274***

(0.011) (0.019)
Constant 14.496*** 13.836***

(0.505) (1.308)

Obs. 12 871 4 586
Controlling for parental EA-PGI

Own EA-PGI 0.212*** 0.224***
(0.017) (0.026)

Mother EA-PGI 0.056*** 0.048**
(0.014) (0.019)

Father EA-PGI 0.057*** 0.032*
(0.013) (0.019)

Constant 14.467*** 13.835***
(0.501) (1.294)

Obs. 12 871 4 586
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01
Notes: the table reports estimation results of predicted years of education (given

highest qualification) on EA-PGI. The top panel reports baseline estimations with-
out controlling for parental EA-PGI. The bottom panel reports results from esti-
mations controlling for parental EA-PGI. All estimations additionally control for
first ten genetic principal components, gender, year of birth, calendar and biobank
indicators. The results in second column were obtained in the sample of all trios
(including those whose parents’ genotypes were imputed from incomplete trios
or siblings). In the third column, the estimation sample is restricted to only the
trios that were directly genotyped. Standard errors reported in parentheses.
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Table A.8: Cumulated lifetime income by own and parents’ EA-PGI percentiles and
gender

Dependent variable: cumulated income

Own EA-PGI Father EA-PGI Mother EA-PGI

Male Female Male Female Male Female

10th percentile 441 954 285 287 417 298 286 268 434 859 290 561
(12 946) (5 277) (10 162) (4 107) (9 838) (4 208)

90th percentile 444 162 304 811 469 661 304 026 451 235 299 437
(11 618) (5 116) (11 931) (4 491) (9 939) (4 353)

Obs. 2 663 5 145 2 663 5 145 2 663 5 145

Notes: the table reports adjusted lifetime income (up to 25 years since graduation) at 10th
and 90th percentiles of EA-PGI distribution. Average income adjusted by regressing cu-
mulated income on parental EA-PGI fully interacted with index person’s gender, first ten
genetic principal components, year of birth, calendar, and biobank indicators. The estima-
tion sample is restricted to tertiary educated index people. Income discounted to obtain its
net present value upon graduation (see Section 4.2 for additional information). Standard
errors reported in parentheses.

Table A.9: Cumulated lifetime income by own EA-PGI percentiles: weighted and un-
weighted analysis

Dependent variable: Cumulated income

Pooled Secondary Tertiary

Unweighted Weighted Unweighted Weighted Unweighted Weighted

Panel A: Genotyped sample (baseline specification)
10th percentile 309 438 291 728 262 462 257 996 345 947 331 362

(1 316) (1 286) (1 440) (1 501) (1 959) (1 920)
50th percentile 329 829 308 756 255 444 249 549 368 656 350 947

( 856) ( 832) (1 114) (1 157) (1 137) (1 105)
90th percentile 350 395 325 930 248 366 241 029 391 560 370 700

(1 590) (1 525) (2 119) (2 185) (2 004) (1 938)

Obs. 51 056 51 056 18 692 18 692 32 364 32 364
Panel B: Family trio sample (controlling for parents)

10th percentile 303 711 304 546 259 965 263 787 339 170 345 745
(3 910) (4 417) (4 625) (5 261) (5 695) (6 559)

50th percentile 313 178 313 886 255 342 258 422 345 629 351 212
(1 697) (1 981) (2 153) (2 388) (2 321) (2 755)

90th percentile 322 768 323 347 250 658 252 986 352 173 356 750
(3 936) (4 502) (5 297) (5 717) (5 201) (6 114)

Obs. 12 871 12 871 5 063 5 063 7 808 7 808

Notes: The table reports adjusted lifetime income (up to 25 years since graduation) by own EA-PGI percentiles. Panel
A reports the baseline results obtained from regression of cumulated income on EA-PGI controlling for first ten genetic
principal components, gender, year of birth, calendar year, and biobank indicators. Panel B reports the results in the
family trio subsample obtained from similar regression, but additionally controlling for parents’ EA-PGI as well. Income
discounted to obtain its net present value upon graduation (see Section 4.2 for additional information). The weighted
analysis use inverse probability weights that we compute to match average birth cohort, education, graduation year,
gender and rural residence indicators in the population of Finnish graduates. Standard errors reported in parentheses.
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