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Abstract

This paper builds on the Empirical Monte Carlo simulation approach to study the es-
timation of Timing-of-Events (ToE) models. We exploit rich Swedish data of unemployed
job seekers with information on participation in a training program to simulate placebo
treatment durations. We first use these simulations to examine which covariates are key
confounders to be included in dynamic selection models for training participation. The
joint inclusion of specific short-term employment history indicators (notably, the share of
time spent in employment), together with baseline socio-economic characteristics, regional
and inflow timing information, is important to deal with selection bias. Next, we omit
subsets of explanatory variables and estimate ToE models with discrete distributions for
the ensuing systematic unobserved heterogeneity. In many cases the ToE approach pro-
vides accurate effect estimates, especially if time-varying variation in the unemployment
rate of the local labor market is taken into account. However, assuming too many or too
few support points for unobserved heterogeneity may lead to large biases. Information cri-
teria, in particular those penalizing parameter abundance, are useful to select the number
of support points. A comparison with other duration models shows that a Stratified Cox
model performs well with abundant multiple spells but less well when multiple spells are
uncommon. The standard Cox regression model performs poorly in all configurations as it
is unable to account for unobserved heterogeneity.
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1 Introduction

In many empirical applications, researchers are interested in identifying the effect of a treat-
ment given during a spell in a state of interest on the rate of leaving that state. Whenever sys-
tematic unobserved confounders cannot be ruled out, a leading approach in this setting is the
Timing-of-Events (ToE) model developed by Abbring and van den Berg (2003), who specify
a bivariate Mixed Proportional Hazard (MPH) model and establish conditions under which
all its components, including the treatment effect, are non-parametrically identified. Due to
its flexibility in allowing for unobserved confounders, the ToE approach has been applied in
many different settings.

Despite its widespread use in the treatment evaluation literature, the ToE approach relies
on taking several implementation decisions that if not properly addressed can lead to severe
bias in the estimated model parameters. A primary decision concerns the unknown bivariate
unobserved heterogeneity distribution, which in the literature is often approximated by way of
a discrete distribution (Lindsay, 1983; Heckman and Singer, 1984). When estimating the model,
this approximation can be implemented in several ways. One approach is to pre-specify a (rel-
atively low) number of support points and increase this number until the numerical estimation
routine indicates that the support points converge or their associated probabilities vanish, or
until computational problems arise. Alternatively, information criteria can be used to select
the number of support points. Sample size may also be a relevant factor, since the estimation
of non-linear MPH models with many parameters may be problematic when the sample size
is small. In addition, time-varying covariates may make results less dependent on functional-
form assumptions (van den Berg, 2001).

In this paper, we use a new simulation design based on real data to evaluate these and
related specification issues for the implementation of the ToE model in practice. To this end,
we adapt the Empirical Monte Carlo design (EMC) originally proposed by Huber et al. (2013)
to compare different methods for estimating treatment effects under unconfoundedness.? The
key idea is to use actual data on treated units to simulate placebo treatments for non-treated
units. This ensures that the true simulated treatment effect is zero, that the selection model is
known, and that the unconfoundedness assumption holds by construction. The relevance of
this simulation design for real-life applications relies on the fact that the simulations are based
on real data rather than on an arbitrarily chosen data generating process.

All previous EMC implementations have examined estimators based on conditional inde-
pendence assumptions. We implement a variant of the original EMC approach that enables

us to study the estimation of the ToE model, which is cast in a duration framework. In our

1An early example is Abbring et al. (2005) who study the effect of benefit sanctions on the re-employment
rate, with unobserved factors such as personal motivation potentially affecting both the time to a benefit sanction
(treatment) and time in unemployment (outcome). Examples include Crépon et al. (2018), Richardson and van den
Berg (2013), Holm et al. (2017), Bergemann et al. (2017) on labor market policies; van Ours and Williams (2009) on
cannabis use; van den Berg and Gupta (2015), Lindeboom et al. (2016) on health settings; Bijwaard et al. (2014) on
migration; Jahn and Rosholm (2013) on temporary work; and Baert et al. (2013) on overeducation.

20ther studies using the EMC simulation design include Huber et al. (2016) on the performance of parametric
and semi-parametric estimators used in mediation analysis: Frolich et al. (2017) study the performance of a broad
set of semi- and non-parametric estimators for evaluation under conditional independence; Lechner and Strittmat-
ter (2017) compare procedures to deal with common support problems; Bodory et al. (2020) consider inference
methods for matching and weighting methods.



simulation design, we take advantage of rich administrative data on Swedish job seekers, with
detailed information on participation in a training program (the treatment). We start by using
data on actual treated and non-treated units to estimate an auxiliary duration model for the du-
ration until treatment under the assumption that all systematic determinants of the treatment
assignment are captured by a comprehensive set of covariates. Next, we simulate placebo treat-
ment dates for each non-treated unit using this estimated selection model. By construction, the
effect of the placebo treatments is zero and the treatment assignment process is known. With
the simulated data we then estimate alternative ToE models by omitting subsets of the vari-
ables that were previously used to simulate the placebo treatment dates. Since the excluded
variables are used to generate the placebo treatments, and since in general they also affect the
outcome duration (via the re-employment rate), we obtain a bivariate duration model with
correlated unobserved determinants, i.e. the ToE setting.

Our simulations lead to several conclusions. When omitting a large number of variables
from the model without controlling for unobserved heterogeneity, the estimated placebo treat-
ment effect is far from the true zero effect, i.e. the estimated treatment effect is characterized
by substantial bias. However, two support points for the unobserved heterogeneity term are
already able to eliminate a large share of the bias. We also find a risk of over-correcting for the
unobserved heterogeneity: when using too many support points, the average bias is more than
twice as large as when using few support points, and the variance of the estimated treatment
effect increases in the number of support points.

We further find that information criteria are useful for selecting an appropriate number
of support points of the discrete bivariate unobserved heterogeneity distribution of the ToE
model. In particular, the Akaike information criterion (AIC), Bayesian information criterion
(BIC), and Hannan-Quinn information criterion (HQIC) all perform well; they protect against
over-correction by penalizing parameter abundance and guard against under-correction by
rejecting models with few or no correction for the unobserved heterogeneity. On the other
hand, information criteria with little penalty for parameter abundance, such as those solely
based on the maximum likelihood (ML criterion), should be avoided. This is because they
tend to favor models with too many support points, leading to over-correction problems. We
additionally show that the use of time-varying covariates (such as the unemployment rate in
the local labor market measured at monthly intervals) helps reducing the bias.

We also provide additional insights by comparing the ToE model with other commonly
used duration models. A frequently used estimation approach is the standard Cox propor-
tional hazard regression model, estimated by using partial maximum likelihood. We confirm
that this model is unable to adjust for the correlated unobserved heterogeneity that we generate
with our empirical Monte Carlo design. A common approach to adjust for unobserved hetero-
geneity is to exploit information on individuals with multiple spells and conduct a stratified
analysis. Such stratified analysis relies on the assumption that the unobserved heterogeneity is
constant across individual’s spells. Common violations of this assumption are that the unob-
served characteristics may change over time and the outcome (exit and treatment) of previous
spells may affect future spells. We show that such a Stratified Cox model performs well for
data with frequent multiple spells, but less well when multiple spells are uncommon.



As mentioned, when adopting the ToE approach, a central question concerns how to spec-
ify the unobserved heterogeneity distribution. In the literature, initial simulation evidence for
MPH models was provided by Heckman and Singer (1984), Ridder (1987), Huh and Sickles
(1994) and Baker and Melino (2000). Gaure et al. (2007) examine a discrete-time bivariate dura-
tion model and analyze if the use of a discrete unobserved heterogeneity distribution is able to
uncover the treatment effect of interest. They find that the discrete support-points approach is
generally reliable if the sample is large and time-varying covariates are used. Moreover, they
find that pre-specifying a low number of support points for the unobserved heterogeneity or
deviations from other model assumptions may lead to substantial bias of the treatment effect.
We contribute to this literature by using a simulation design that is based on real data rather
than on artificial simulations. This allows us to assess whether ToE models are able to identify
treatment effects by using data similar to those used in typical applications. In addition, we
exclude different blocks of covariates and study how the ToE approach performs with different
types of unobserved heterogeneity. We also examine how the model performs under different
degrees of correlation between the observed covariates and the unobserved heterogeneity.

Using our simulation design we also examine how the choice of covariates affects the esti-
mated bias. This relates to a literature that uses experimental data to examine the relevance of
different sets of covariates (Dehejia and Wahba, 1999, 2002; Smith and Todd, 2005).3 It also re-
lates to studies that use rich survey data to examine characteristics that are often not recorded
in administrative data*, and to Lechner and Wunsch (2013), who implement an EMC approach
with German administrative data to examine the relative importance of adjusting for different
types of variables. Using Swedish data, we examine whether the results in Lechner and Wun-
sch (2013) carry over to other countries and programs, while also analyzing the relevance of
additional covariates not considered by the authors. Specifically, since we model treatment
durations, and since previous durations may capture aspects related to how long one stays
unemployed in the current spell in a more natural way than non-duration history variables,
we include previous employment and unemployment durations in our set of covariates. We
also use information on parental income to proxy for more general skills, and we examine
the importance of time-varying covariates such as local business cycle conditions. One of our
findings is that short-term labor market history variables are particularly important to adjust
for, and that adjusting for employment history is relatively more important than adjusting for
unemployment, earnings and out-of-labor-force history. We also find that, once controlling for
short-term labor market history variables, further adjusting for long-term labor market histo-
ries becomes redundant.

Finally, it is useful to discuss our approach in light of Advani et al. (2019), who point out
some limitations of the original EMC approaches that were developed to compare different

estimators based on the unconfoundedness assumption. Notably, the authors show that rather

3Heckman et al. (1998), Heckman and Smith (1999) and Dolton and Smith (2010) find that it is important to
control for regional information and labor market history in a flexible way. Mueser et al. (2007) highlight the
importance of socio-demographic characteristics and pre-treatment outcomes.

“For example, Caliendo et al. (2017) study the relevance of measures of personality traits, attitudes, expectations,
social networks and intergenerational information. They find that such factors are indeed relevant elements in
selection models, but they tend to become unimportant if the available information in the administrative data is
sufficiently rich.



modest model misspecifications may lead to incorrect EMC inference on what constitutes the
best estimation approach for that model in a given empirical setting. Depending on the range
of misspecification that is considered, this is potentially relevant for our study. Therefore,
throughout the paper we do not allow for deviations of the proportionality assumptions in the
MPH specifications, and we simulate treatment durations and estimate ToE models assuming
that the ToE functional form is correct. The proportionality assumption is in line with the vast
empirical literature based on the ToE approach in the past decades (see, e.g., the references
above); maintaining it throughout our analysis has the benefit of keeping the simulation exer-
cises computationally tractable, while allowing us to focus on other specification issues that,
as we argued before, are key when adopting the ToE approach.

We also acknowledge that there are interesting topics for future research that are beyond
the scope of the present paper. One direction would be to apply the generative adversarial
networks approach in Athey et al. (2024) to conduct further simulations related to the ToE
approach. The critique raised by Advani et al. (2019) may also affect more specific assumptions
of the empirical models that we estimate. For instance, in the presence of heterogeneous effects,
a basic ToE model with a homogeneous effect is misspecified. Another finding in Advani et al.
(2019) is that in modest sample sizes such as sizes below 8,000, bootstrap procedures often
provide the most appealing approach to select the best estimator. However, our samples are
substantially larger (our data contains 2.6 million unemployment spells) and our likelihood-
based inference already requires Swedish national supercomputing resources. Therefore, in
our view the application of bootstrap procedures would be beyond the scope of this paper.

The paper proceeds as follows. Section 2 presents the Timing-of-Events model proposed
by Abbring and van den Berg (2003). Section 3 describes the simulation design and the data
used in the simulations. In Section 4 we describe the estimated selection model that is used to
simulate the placebo treatments and we compare the bias when different sets of covariates are
included in the model. Sections 5 and 6 present the EMC simulation results for the ToE model
and for other duration models, respectively. Section 7 concludes.

2 The Timing-of-Events model

This section presents the ToE approach introduced by Abbring and van den Berg (2003). The
authors specify a bivariate duration model for the duration in an initial state and the duration
until the treatment of interest: T, and T, with t, and ¢, being their realizations. The model in-
cludes individual characteristics, X, and unobserved individual characteristics V, and V), with
realizations (x, v, vp).5 Abbring and van den Berg (2003) assume that the exit rate from the
initial state, 6, (t|D(t), x, v.), and the treatment rate, 6, (|x, v, ), follow the Mixed Proportional

5In the simulation we will also exploit time-varying covariates, but for presentation reasons this is suppressed
in the notation below.



Hazard (MPH) form:®

In6(t|x,D,ve, ty) = InAc(t) +x'Be +6D(t) + ve, (1)
In6,(tx,v,) = InA,(t) +x'B,+ vy,

where t is the elapsed duration, D(f) is an indicator function taking the value one if the treat-
ment has been imposed before f, § represents the treatment effect, and A.(t), A,(t) capture
duration dependence in the exit duration and the treatment duration, respectively. Also, let G
denote the joint distribution of V;, V,, |x in the inflow into unemployment.

Abbring and van den Berg (2003) show that all components of this model, including the
treatment effect, §, and the unobserved heterogeneity distribution, G, are identified under the
following assumptions. The first assumption is no-anticipation, which requires that future
treatments do not affect current outcomes. This holds if the units do not know the exact time
of the treatment or if they do not react on such information. The no-anticipation assumption
also implies that any anticipation of the actual time of the exit from the initial state does not
affect the current treatment rate. A second assumption is that X and V;, V), are independently
distributed, implying that the observed characteristics are uncorrelated with the unobserved
ones. A third assumption is the proportional hazard structure (MPH model). We discuss these
assumptions in more detail when we describe our simulation design. We refer to Abbring
and van den Berg (2003) for further details and for additional regularity conditions that are
required to identify the model parameters.

The ToE model is semi-parametric, in the sense that given the MPH structure, the model
does not rely on any other parametric assumptions, but it requires some exogenous variation in
the hazard rates. The most basic exogenous variation is generated through the time-invariant
characteristics, x, which create variation in the hazard rates across units. Unlike many other
approaches, the ToE method does not require any exclusion restrictions. Instead, identification
of the treatment effect follows from the variation in the moment of the treatment and the mo-
ment of the exit from the initial state. If the treatment is closely followed by an exit from the
initial state, regardless of the time since the treatment, then this is evidence of a causal effect,
while any selection effects due to dependence of V}, and V, do not give rise to the same type of
quick succession of events.

3 Simulation approach

3.1 The basic idea

The idea behind EMC designs is to produce simulations by using real data, as opposed to us-
ing a data generating process entirely specified by the researcher as in a typical Monte Carlo
study. The argument is that real data is more closely linked to real applications with real out-
comes and real covariates, and thus provides arguably more convincing simulation evidence.

As a background to our simulation design, consider the EMC design originally proposed by

®This is the most basic ToE model with time-constant and homogeneous treatment effect, but note that Abbring
and van den Berg (2003) also allow for time-varying treatment effects as well as other extensions of this basic model.



Huber et al. (2013). They use real data on jobseekers in Germany to compare the performance
of alternative estimators of treatment effects under conditional independence. They proceed
in the following way. They first use real data on both treated and non-treated units to cap-
ture the treatment selection process. The estimated selection model is then used to simulate
placebo treatments for all non-treated units in the sample, effectively partitioning the sample
of non-treated units into placebo treated and placebo controls. This ensures that the selection
process used for the simulations is known and that the conditional independence assumption
holds, even if the simulations are based on real data. By construction, the true effect of the
placebo treatments is zero. Then, the authors use the resulting simulated data to analyze the
performance of various CIA-based estimators.

We modify this simulation design in some key dimensions in order to use the EMC ap-
proach to study the ToE model and other commonly used duration models. We use rich
Swedish administrative register data and survey data of jobseekers, with information on par-
ticipation in a major labor market training program.7 The outcome duration, T, is the time in
unemployment, while the treatment duration, T}, is time to the training program. The data
(described below) is also used to create detailed background information for each unit. We use
this data to generate placebo treatments, but instead of simulating binary treatment indica-
tors as Huber et al. (2013) do, we estimate a hazard model for the treatment duration and use
the estimated selection model to simulate placebo treatment durations at the daily level. As
in the standard EMC approach, the effect of these placebo treatments is zero by construction.
Unobserved heterogeneity is then generated by omitting blocks of the covariates that were pre-
viously used in the true selection model to produce the placebo treatment durations. Since the
excluded variables affect both the time in unemployment (the outcome) and, by construction,
the treatment duration, the data is simulated according to a bivariate duration model with
correlated unobserved determinants.

The simulated data is used for various simulation exercises. We mainly examine the ToE
model and study specification of the unobserved heterogeneity with and without information
criteria, we let the sample size vary, and assess the relevance of using time-varying covariates.
We further explore the importance of excluding different types of covariates, the correlation
between the observed and unobserved variables in the model, and model misspecifications
when the simulations are based on a non-multiplicative baseline hazard. We mainly focus on
the estimation of the treatment effect (bias and variance), but we also study whether the model
is able to recover the true unobseved heterogenity distribution of the treatment process.

Let us relate our simulated data to the assumptions made in the ToE approach. By con-
struction, the no-anticipation assumption holds, because the units cannot anticipate and react
to placebo treatments. However, there are other ToE assumptions that may not hold in the
simulation design. In particular, the independence between X and V (random effects assump-

tion) may not hold in our simulations, since the excluded variables representing unobserved

7One important reason to use the Swedish unemployment spell data is that there are many examples of evalu-
ations that estimate ToE models using this type of data (see Section 1). In addition, unemployment durations and
labor market program entries are measured at the daily level. We treat the daily spell data as if it were continuous,
and generate placebo treatment durations measured at the daily level by using a continuous-time selection model.
Accordingly, we estimate continuous-time ToE models.



heterogeneity may be correlated with the variables that were used in the ToE estimation.® To
explore this possibility, we leave out blocks of variables that are either highly or mildly cor-
related with the observable characteristics. It turns out that the degree of correlation between
the observed and unobserved factors is relatively unimportant. We also explore other potential
misspecifications that may be important in practice. Using our simulation design we explore
the consequences of ignoring interaction terms between the variables in the model and conse-
quences of using a ToE model when the true baseline hazard is non-multiplicative. Lastly, in
order to model the treatment selection process we use a duration model without embedded
unobserved heterogeneity. This means that although to estimate the selection process we use
an extremely rich set of variables that mimics the information available to caseworkers when

assigning treatments, the model may be misspecified if there are omitted characteristics.

3.2 The relevance of different covariates

The analysis of the ToE model specification is the main contribution of our paper. However,
by leaving out different blocks of covariates, we can also evaluate the relevance of different
observable characteristics when measuring causal effects of active labor market programs. To
this end, we use the simulated data with placebo treated and non-treated units, for which
the “true” treatment effect is known to be zero. To assess the relative importance of differ-
ent covariates, we leave out alternative blocks of observable characteristics and compare the
magnitude of the bias across the resulting specifications.

This analysis benefits from the availability of rich Swedish data. We first follow Lechner
and Wunsch (2013), who use German data to create variables that have been shown to be
important for the selection process and have been used in various CIA-based evaluations of
active labor market programs. We use Swedish databases to re-construct covariates similar
to those in Lechner and Wunsch (2013), but we also include additional ones not used by the
authors. First, since we model treatment durations and not binary treatment indicators, we
also include covariates that capture the duration aspect of employment and unemployment
histories. The idea is that information on previous durations may capture aspects related to
how long one stays unemployed in a better way than non-duration history variables. Second,
the covariates in Lechner and Wunsch (2013) reflect important aspects of labor market attach-
ment, skills and benefit variables, but more general unobserved skills may also be relevant.
To address this, we use parental income. In the literature on the determinants and returns to
education, parental income has been related to background family skills and traits and has
shown to affect the investment in education (see e.g. Chevalier et al. (2013) and Jensen et al.
(2023)). Parental income has not been used in studies on unemployment durations because,
in general, employment register data do not include such a variable (see Mazzotta (2010) and
Farace et al. (2014) for rare examples of studies relating parental income to offspring unem-
ployment durations). However, it is conceivable that parental income can provide an informal
insurance mechanism against low income in unemployment and hence may affect participa-

tion in training and returns to training. Third, since we model treatment durations, certain

8Likewise, indicators of past individual labor market outcomes included in the vector of covariates may be
stochastically dependent on unobserved heterogeneity.



time-varying covariates, such as business cycle conditions, may be important, especially for
longer unemployment spells. Lastly, another difference compared Lechner and Wunsch (2013)

is that we consider a duration outcome framework.’

3.3 Comparison of different duration models

Our analysis is centered around the ToE model specification, but we also compare the ToE
performance with those of two other approaches for inference on duration outcome variables.
The first comparison is made with a Cox proportional hazard model estimated using partial
maximum likelihood (Cox, 1972). The model assumes that there is no unobserved heterogene-
ity in the hazard rate. Since this assumption is likely violated in empirical applications and
does not hold by construction in our simulation design, the treatment effect and other model
parameters might be severely biased (van den Berg, 2001). At the same time, the approach
is flexible and computationally simple and can be seen as providing descriptive evidence of
relations between variables in the data.

A second comparison is made with a Stratified Cox approach, involving the semiparamet-
ric stratified partial-likelihood estimation of a generalization of the Cox model. The model
allows for unobserved fixed effects and for full interactions between unobserved heterogene-
ity and duration dependence in the hazard rate. The approach takes advantage of the fact that
for a subset of individuals in our sample we have multiple spells, allowing us to stratify at the
individual level. If the individual unobserved heterogeneity is constant across spells, this pro-
cedure should adjust for any unobserved heterogeneity even if it is correlated with the treat-
ment. This offers a tractable way to estimate the treatment effect. However, the assumption
of constant unobserved heterogeneity may be problematic for several reasons. Unobserved
characteristics may change over time, in particular if we consider spells several years apart.
Moreover, the outcome (exit to job and treatment) of previous spells may affect future spells,
therefore creating non-constant unobserved heterogeneity. A stratified Cox analysis also dis-
cards information for individuals with only one spell. Together, this suggests that the type of
data at hand may affect how well a stratified analysis compares to a ToE analysis.

In Section 6 we compare the three approaches across different sampling designs.

3.4 The training program

One often-studied treatment that job seekers are assigned to is labor market training. This mo-
tivates our use of data on the Swedish vocational training program AMU (Arbetsmarknadsut-
bildning). The program and the type of administrative data that we use resemble those of other
countries. The main purpose of the program, which typically lasts for around 6 months, is to
improve the skills of the jobseekers so as to enhance their chances of finding a job. Training

courses include manufacturing, machine operator, office/warehouse work, health care, and

9Note that this procedure holds under the assumption of CIA with the full set of covariates. Lechner and
Whunsch (2013) provide good arguments as to why CIA should be valid in their German setting when they use their
full set of covariates, and Vikstrom (2017) provides similar arguments for Sweden. This can of course always be
questioned, for instance, because treatment selection is based on unobserved motivation and skills. Thus, we study
the relevance of the different observed covariates, keeping in mind that there may also be important information
that is not included in our data.



computer skills. The basic eligibility criterion is to be at least 25 years old. During the training,
participants receive a grant. Those who are entitled to unemployment insurance (UI) receive a
grant equal to their UI benefits level, while for those not entitled to Ul the grant is smaller. In
all cases, training is free of charge.

Previous evaluations of the effects of the AMU training program on unemployment include
Harkman and Johansson (1999), de Luna et al. (2008), Richardson and van den Berg (2013), and

van den Berg and Vikstrom (2022). These studies also describe the training program in detail.

3.5 Data sources and sampling

We combine data from several administrative registers and surveys. The Swedish Public Em-
ployment Service provides daily unemployment and labor market program records of all un-
employed in Sweden. We use this information to construct spell data on the treatment duration
(time to the training program) and the outcome duration (time to employment), both measured
in days. We sample all unemployment spells starting during the period of 2002-2011. Any on-
going spells are right-censored on December 31, 2013.

The analyses are restricted to the prime-age population (age 25-55), since younger workers
are subject to different labor market programs and to avoid patterns due to early retirement
decisions of older workers. We also exclude disabled workers. In total, there are 2.6 million
sampled spells, of which 3% involve training participation. The mean unemployment duration
in the sample is 370 days. In case a job seeker enters into training multiple times, only the first
instance is considered.

For each spell, we construct detailed information on individual-level characteristics. We
start by constructing covariates similar to those in Lechner and Wunsch (2013).1° The pop-
ulation register LOUISE provides basic socio-economic information, such as country of ori-
gin, civil status, regional indicators and level of education. Matched employer-employee data
(RAMS) and wage statistics from Statistics Sweden are used to construct information on the
characteristics of the last job (wages, type of occupation, skill-level), and to retrieve informa-
tion on the characteristics of the last firm (firm size, industry and average worker character-
istics). Unemployment Insurance (UI) records provide information on Ul eligibility. The data
from the Public Employment Service is also used to construct unemployment history variables
and information on the regional unemployment rate. Earnings records and data on welfare
participation are used to construct employment, out-of-labor force and earnings histories. We
construct both short-run history (last two years) and more long-run history (last ten years).
All these characteristics should capture key aspects of the workers employment and earnings
history.

We also compute previous unemployment and employment durations, the idea being that
previous durations may capture the duration in the current spell in a better way than the
above-mentioned employment history variables. We measure time spent in the last employ-

ment spell, time in the last unemployment spell as well as indicators for no previous unem-

10There are some differences between the Swedish and German data. The classification of occupations differs,
we lack some firm-level characteristics, and we have less information on Ul claims. We also use welfare benefits
transfers to construct measures of out-of-labor-force status.

10



ployment/employment spell. We also study the relevance of controlling for the mother’s and
father’s income, under the assumption that parental income may capture general unobserved
skills, using the Swedish multi-generational register (linking children to parents) and income
registers for the parents. Finally, we explore time-varying covariates through the monthly local
unemployment rate in the region (Sweden has 21 regions).

The outcome considered in this paper is the re-employment rate. We consider as an exit to
employment a transition to a part-time or full-time job that is maintained for at least 30 days.

All covariates that are used in the analyses are summarized in Table A-1 in the appendix.
The statistics in the table show that immigrants from outside Europe, males, married and the
less educated jobseekers are over-represented among the training participants. Training par-
ticipants also also more likely to be employed in firms with lower wages, and there are fewer

previous managers and more mechanical workers among the treated workers.

3.6 Simulation details

Selection model. The first step of the EMC design is to estimate the treatment selection model.
We use a continuous-time parametric proportional hazard model for the treatment hazard,
9p(t]x), at time, f, conditional on a set of covariates, x, which includes time-fixed covariates

and time-varying monthly regional unemployment rate:!!

Op(t[x) = Ap(t) - exp(xBp). 2)

The baseline hazard, A, (t), is taken as piecewise constant, with In A, (t) = &, for t € [t,,_1, tm),
where m is an indicator for the m™ time interval. We use eight time intervals, with splits after
31, 61, 122, 183, 244, 365 and 548 days. The included covariates are listed in Table A-1 in the
appendix. The model estimates in the same table show that the daily treatment rate peaks
after roughly 300 days. They also confirm the same patterns found for the sample statistics:
immigrants, younger workers, males, high-school graduates, and Ul recipients are more likely
to be treated. Short- and long-term unemployment and employment history variables are also
important determinants of the treatment assignment.

After estimating the selection model by using the full population of actual treated and
controls (i.e. the never treated), the treated units are discarded and play no further role in the
simulations. Next, we use equation (2) to simulate the placebo times to treatment for each

non-treated, T, which is generated according to (dropping x to simplify the notation):

exp (- /O " GP(T)dT> —u, 3)

where U ~ U0, 1]. Since 6,(t) > 0 Vt, the integrated hazard fOT’“ 0,(7)dT is strictly increasing

in T. By first randomly selecting U for each unit and then finding the unique solution to (3),

we can retrieve T), for each observation.!?

11Al’cerna’tively, one could use a semi-parametric single-index estimator for the hazard rate of Tp|X, for example
the Gergens (2006) estimator. However, this would be numerically cumbersome and since the model does not
impose a proportional hazard structure it may not be compatible with any ToE model.

12The actual distribution for the integrated hazard will depend on the specification of the selection model in
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During this procedure, ép(t|xi) is multiplied by a constant v, which is selected such that
the share of placebo treated is around 20%. This ensures that there is a fairly large number
of treated units in each sample, even if the sample size is rather small. A similar approach is
adopted by Huber et al. (2013).

Simulations. The placebo treatments are simulated for all non-treated units. Next, we
draw random samples of size N from this full sample (independent draws with replacement).
We set N = 10,000, 40,000 and 160,000 because ToE models are rarely estimated with small
sample sizes. If the estimator is Root-N-convergent, increasing the sample size by a factor of
4 (by going from 10,000 to 40,000, or from 40,000 to 160,000) should reduce the standard error

by 50%. For each ToE specification we perform 500 replications.

3.7 Implementation of the bivariate duration model

We estimate a continuous-time ToE model for the treatment and outcome hazards as defined in
equation (1). The unknown distribution of the unobserved heterogeneity is approximated by
a discrete support points distribution (Lindsay, 1983; Heckman and Singer, 1984; Gaure et al.,
2007).

Likelihood function. For each uniti = 1,..., N we formulate the conditional likelihood
contribution, L;(v), conditional on the vector of unobserved variables v = (v,,v;). Then, the
individual likelihood contribution, L;, is obtained by integrating L;(v) over the distribution
of the unobserved heterogeneity, G. For the duration dependence (A.(t), A,(f)), we use a
piecewise constant specification with As(f) = exp(as, ) where the spell-duration indicators are
asm = L[t € [ty—1,tm)], for m = 1,..., M cut-offs. We fix the cut-offs to 31, 61, 122, 183, 244,
365 and 548 days. In the section below we discuss the observed variables used in the model.

To set up L;(v), we split the spells into parts where all right-hand side variables in equa-
tion (1) are constant. Splits occur at each new spell-duration indicator and when the treatment
status changes. In all baseline ToE specifications, the covariates specified are calendar-time
constant. In additional specifications where the time-varying local unemployment rate is in-
cluded, calendar-time variation leads to additional (monthly) splits.!* Spell part j for unit i is
denoted by c;;, and has length [;;. Let C; be the set of spell parts for unit i. Each part, ¢;j, is fully
described in terms of I, ®em, ®pm, Xi, and the two outcome indicators, yfj and yZ. which equals
one if the spell part j ends with a transition to employment or treatment, respectively, and zero

otherwise.

equation (2). In the simple case where all covariates are time-fixed and the placebo treatments are generated by
using a proportional hazard model that has two piecewise constant parts, with 92 fort € [0,¢1) and 9;, fort > t;:

T, exp (— fOT” 92111’) if U>exp (7 fotl 92d1’>
exp —/ Op(T)dt | = 0 T, )
0 exp (— fo! 0pdT — [}, de'r) otherwise
This can be easily extended to the case where the baseline hazard has more than two locally constant pieces and
where X contains time-varying covariates (in both cases, the integrated hazard shifts in correspondence of changes
in such covariates over calendar- or duration-time).

131n this case, the vector of observables in Equation (4) below can simply be specified as x;;.
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Then, with approximately continuous durations, L;(v) is:

Li(o) =[] {exp (—1ij0e(t]xi, Dyt ve)) X Be(t]x;, Dit, ve) i %

Cij eC;

P
x exp (—1ij0y(t|xi,vp)) x Op(t|x;, vp)yf/} , (4)
with

0. (t|x;, Dit, ve) = Ae(t) exp(xiBe) exp(dD;t) v,
Op(t|x1-,vp) = )\p(t) exp(xgﬁp) o

L; is obtained by integrating L;(v) over G(V). Let py, be the probability associated with support
point, w, withw =1,..., W, such that )} ,_w p» = 1. Then, the log-likelihood function is:

L= Z(prlnL vw> ZL 5)

Search algorithm. To estimate the discrete support points, we use the iterative search al-
gorithm in Gaure et al. (2007). For each replication we estimate models with up to W support
points. We can then select the appropriate model using alternative information criteria (see
below). Let 8y be the maximum likelihood (ML) estimate with W support points. The search
algorithm is:

Step 1: Set W = 1 and compute the ML estimate dyy.

Step 2: Increment W by 1. Fix all ¢y elements but (vw, pw) to dw_1. Use the simulated
annealing method (Goffe et al., 1994) to search for an additional support point, and

return the (9w, pw) values for the new support point.

Step 3: Perform ML maximization with respect to the full parameters vector ¢y = (B, v, p)
by using dw_1 and (9w, Pw) as initial values. Return dw.

Step 4: Store {dw, L(dw)}. If W < W return to Step 2, else stop.

Step 1 corresponds to a model without unobserved heterogeneity, since ¥ cannot be distin-
guished from the intercept in X. In Step 2 the algorithm searches for a new support point in the
[—3, 3] interval.'* In this step, all other parameters of the model are fixed. This explains why
in Step 3 we perform a ML maximization over all parameters, including the new support point.
At the end of the procedure we obtain W maximum likelihood estimates: {d, £(dw)}IW_,.

Information criteria. We use different approaches to choose between the W estimates.
First, we report results where we pre-specify the number of support points (up to six points).
An alternative approach is to increase the number of support points until there is no further

14 As starting values we set vy = 0.5 and pyy = exp (—4). The simulated annealing is stopped once it finds
a support point with a likelihood improvement of at least 0.01. In most cases, the algorithm finds a likelihood
improvement within the first 200 iterations.
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improvement in the likelihood (ML criterion). It is defined as ML = L (&), where only likeli-
hood increases greater than 0.01 are considered. We also use information criteria that penalize
parameter abundance. Specifically, the Akaike information criterion (AIC), the Bayesian in-
formation criterion (BIC) and the Hannan-Quinn information criterion (HQIC). The latter two
are more restrictive since they impose a larger penalty on parameter abundance. Formally,
AIC = L(dw) —k, BIC = L(d) — 05k -InN and HQIC = L(dw) — k- In(InN), where
k = k(W) is the number of estimated model parameters and N is the total number of spell
parts used in the estimation.'

All criteria are calculated for each replication, so that the selected number of support points
may vary both across replications and criteria. This allows us to compute the average bias and

the mean square error for all information criteria.

4 Available covariates and evaluations of ALMPs

In this section we assess the relevance of the individual different types of covariates in a spe-
cific way, by leaving out various blocks of covariates and by comparing the size of the bias - the
difference between the estimated treatment effect and the true zero effect of the placebo treat-
ments — across proportional hazard (PH) specifications for the exit rate out of unemployment.
All covariates are a subset of those used to generate the placebo treatments. For each specifi-
cation, the full sample of placebo treated and placebo non-treated units is used to estimate a
parametric PH model. Here, the baseline hazard is specified in the same way as for the model
used to simulate the placebo treatments. The main results are given in Table 1. Below Panel A,
each subsequent panel of the table starts with the covariates from the proceeding panels and
then adds additional information, so that the model is extended sequentially by adding blocks
of covariates one by one. This will, for instance, reveal the relevance of adding long-term labor
market histories on top of short-term history and socio-economic characteristics. Table A-1 in
the appendix lists all covariates in the blocks.

Panel A of Table 1 starts with the “baseline” model with a set of baseline socio-economic
characteristics, which returns a positive and sizable bias of 6.9%. That is, the estimated treat-
ment effect is 0.069 when the true effect of these placebo treatments is equal to zero. Adding
spatial and temporal dummies and the local unemployment rate slightly reduces this bias to
6.2%. Since the corresponding excluded covariates include short- and long-term labor mar-
ket history, the positive bias means that training participants tend to have more favorable
labor market histories. Panel B compares the relevance of short-term employment, unemploy-
ment, earnings and welfare benefit histories. All these blocks of short-term history covariates
reduce the bias. However, adjusting for short-term employment history is relatively more
important than adjusting for unemployment, earnings and welfare history (out-of-labor-force
status). This indicates that participants in labor market training are to a large extent selected
based on their previous employment records. One explanation may be that caseworkers aim

to select jobseekers with an occupational history aligned with the vocational training program.

15We follow Gaure et al. (2007) and use the grand total number of spell parts. N can be alternatively used, but
our simulations indicate that this is of minor importance in practice.
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We next consider individual variables and examine what specific aspects of previous em-
ployment and unemployment are the most important to adjust for. Table A-2 in the appendix
shows that information on previous employment duration reduces the bias considerably: from
6.2% in the baseline specification to 3.9% (Panel A). However, adding information on past em-
ployment rates or other short-term employment history variables reduces the bias even more,
leading to biases of -0.04% and 0.2%, respectively (Panel B and C). In particular, Panel B shows
that each covariate measuring past employment single-handedly captures a large part of the
bias, so that adjusting for previous employment rates is relatively more important than ad-
justing for previous employment durations. All in all, this suggests that for training programs
with emphasis on human capital accumulation, the most important characteristics to control
for are those related to the past employment status.!®-!”

Next, let us return to Table 1. Here, Panel C shows that adding information on long-term
labor market history (last ten years) on top of short-term history (last 2 years) has a minor im-
pact on the bias of the estimated treatment effect. The same holds when in Panel D we adjust
for various characteristics of the last job (e.g., previous wage and occupation) as well as for
detailed information about the last firm (e.g., industry and composition of worker). Lechner
and Wunsch (2013) also find that, after controlling for calendar time, regional conditions and
short-term labor market history, including additional covariates such as long-term labor mar-
ket history is relatively unimportant. This is also consistent with the results in Heckman et al.
(1998), Heckman and Smith (1999), Mueser et al. (2007), and Dolton and Smith (2010), who find
that it is important to control for regional information, labor market history and pre-treatment
outcomes. However, one difference with the previous literature is that we find that adjust-
ing for short-term employment history suffices to obtain a small bias, whereas Lechner and
Wunsch (2013) find that it is important to also adjust for all aspects of the short-term history
(employment, unemployment, out-of-labor-force status, earnings).

Panel D shows that parents” income turns out to have limited impact on the bias, at least
once we control for both short- and long-term labor market history variables. To the extent that
parental income is able to proxy for general unobserved skills, this indicates that labor market
histories are also able to capture more general unobserved skills.'®

16Panels D to F of Table A-2 in the appendix report estimates from a similar exercise where we control for the
short-term unemployment history and duration variables one at a time. This confirms that unemployment history
variables have a modest impact on the estimated bias compared to the employment history variables. We also tried
to additionally include past employment and unemployment durations more flexibly, by either specifying them on
logarithmic- and quadratic-scale or by including information from the previous two spells. The bias is only slightly
reduced compared to the information reported in Table A-2 and all patterns are qualitatively unaffected.

17Tt may be argued that aspects of past unemployment experience are good indicators of the unobserved hetero-
geneity term V; in the current spell. For example, in MPH duration models, the log mean individual duration is
additive in V,. This would suggest that inclusion of such aspects as covariates strongly reduces the bias. However,
the actual bias in the estimated treatment effect also depends on the extent to which these aspects affect treatment
assignment over and above the included determinants of the latter.

18This is consistent with the results in Caliendo et al. (2017), who finds that once controlling for rich observables
of the type that we include here, additional (usually unobserved) characteristics measuring personality traits and
preferences become redundant.
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5 Specification of the ToE model

We now study aspects related to the specification of the ToE model. Our main focus is on the
(placebo) treatment effects. We study to what extent the ToE model is able to adjust for the bias
observed in the previous section and which specification of the model leads to the best results

in terms of average bias, variance, and mean squared error (MSE) of the placebo estimates.

5.1 Baseline results

Table 2 reports results from the baseline simulations where we compare different specifica-
tions of the discrete unobserved heterogeneity distribution. In these simulations we adjust for
baseline socio-economic characteristics, inflow time dummies, regional indicators and unem-
ployment rate (the covariates in Panels A and B of Table A-1). Here, we control for time-fixed
regional unemployment rate (measured as the month of inflow into unemployment). Later, in
Table 3, we estimate ToE models with time-varying regional unemployment rate.

First, consider the results for a sample size of 10,000 in Columns 1-3. In Panel A, we fix the
number of support points to a pre-specified number in all replications. The first row shows
that the baseline model without unobserved heterogeneity (one support point) leads to large
bias (6.0%).!” This confirms that under-correcting for unobserved heterogeneity may lead to
substantial bias. However, already with two support points the bias is reduced from 6.0% to
2.7%.% For three or more support points, the average bias is even larger and keeps increasing
in the same direction when adding additional support points. With six support points the
average bias (6.4%) is more than twice as large as the average bias with two support points
(2.7%). Moreover, both the variance and the MSE increase in the number of support points
(Columns 2-3).

One explanation for the finding that the bias in the estimated treatment effect increases
when using more than two support points is that specifications with many support points
tend to over-correct for unobserved heterogeneity.?! This pattern contradicts the intuition that
one should adjust for unobserved heterogeneity in the most flexible way in order to avoid bias
due to unaccounted unobserved heterogeneity.

To better understand this over-correction pattern, Figure 1 shows the distribution of the
treatment effect estimates for one, two and six support points. With one support point, the
estimates are centered around a bias of around 6% and the variance of the estimates is relatively
low. With two support points the entire distribution shifts towards zero (although the average
bias is non-zero), but the variance gets larger than for one support point. With six support
points, there is a further increase in the variance. Moreover, the entire distribution of the

9This is roughly the same bias as in the corresponding model estimated with the full sample in Panel A of Table
1. The minor difference is due to sampling variation since here we report the average bias from random drawings,
whereas estimates in Table 1 are obtained from the full set of placebo treated and non-treated observations.

20Here, we focus on the bias of the treatment effect, but previous simulation studies using simulated data show
that failing to account for unobserved heterogeneity also leads to bias in the spell-duration component and in the
covariate effects (Gaure et al., 2007).

2IThere may be an analogy to estimation of models with nonparametric components, where over-fitting prevents
a bias in the model dimension that is fitted nonparametrically but may have the unintended consequence that other
model parameters are less precisely estimated.
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estimates shifts to the right (larger positive bias), which shows that the increased bias is not
due to a few extreme estimates.

In sum, our simulation results suggest that both under- and over-correction are important
issues when estimating ToE models. Thus, finding a way to select the appropriate number of
support points appears to be important. We explore this in the next section.

5.2 Information criteria

Panel B of Table 2 provides simulation results when the distribution of the unobserved hetero-
geneity (number of support points) is specified by using alternative information criteria. Panel
C reports the average number of support points that are selected according to each criterion.
The ML criterion, where the number of support points is increased as long as the likelihood is
improved, leads to 4.11 support points on average. The bias and variance are large compared
to simply pre-specifying two or three support points. Hence, the ML criterion tends to select
too many support points, leading to the over-correction problem mentioned above. This pat-
tern is confirmed in all simulation settings presented below. Therefore, from this first set of
results we conclude that criteria with little penalty for parameter abundance, such as the ML
criterion, should be avoided altogether when selecting the number of mass points.

The results for AIC, BIC and HQIC information criteria are more encouraging. All three
criteria select models with rather few unobserved heterogeneity support points. In this setting,
this corresponds to the specifications with the lowest bias achieved when pre-specifying a low
number of support points. We conclude that these more restrictive information criteria protect
against over-correction problems by penalizing the number of parameters in the discrete het-
erogeneity distribution. They also guard against under-correction problems (too few support
points) by favoring models with unobserved heterogeneity over models without unobserved
heterogeneity (one support point).

A comparison between the AIC, BIC and HQIC criteria reveals rather small differences.
As expected, the two more restrictive information criteria (BIC and HQIC) lead to models
with fewer support points, and the average bias is slightly lower than for the less restrictive
AIC criterion. The variance is also slightly lower for BIC and HQIC than for AIC. This is
because these more restrictive criteria tend to select fewer support points and the variance of
the estimated treatment effects is increasing in the number of support points. However, later
we will see that none of the three criteria is superior in all settings. In some cases, the risk of
under-correcting is relatively more important, and this favors the less restrictive AIC criterion.
In other cases, the opposite holds, in which case the more restrictive BIC and HQIC criteria
are preferable. Thus, using all three criteria and reporting a range of estimates as a robustness
check appears to be a reasonable approach.

In this section, our main interest is to provide information on the alternative specification
choices. However, Table 2 also provides insights on the overall idea of using ToE models to
adjust for unobserved heterogeneity. The table shows that the ToE approach corrects for a large
share of the bias, which is reduced from 6.0% for the model without unobserved heterogeneity
to around 2.7% when information criteria are used to select the number of support points (see

Column 1 of Table 2). This holds even though the only source of exogenous variation derives
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from time-fixed observed covariates.

5.3 Sample size

In Columns 4-6 and 7-9 of Table 2, the sample size is increased to 40,000 and 160,000 obser-
vations, respectively. The results with both sample sizes confirm that two support points are
associated with the lowest bias. However, now the increase in the bias after three support
points is smaller than for 10,000 observations. For instance, with 10,000 observations, going
from two to six support points increases the bias from 2.7% to 6.4%, whereas with 40,000 ob-
servations the bias increases from 2.2% to 3.7%. This shows that over-correction issues are
mainly a problem with small sample sizes. This makes sense in the light of the general princi-
ple that estimation imprecision due to overfitting becomes less of a problem when the sample
size increases (provided that the number of parameters remains constant).

Note that what constitutes a small sample size in general differs across applications and
relates to the number of parameters in the model, the fraction of treated units, the number
of exit states, and the variation in the observed variables. It is reassuring that with larger
sample sizes the differences between the alternative information criteria are relatively small.
For instance, with a sample size of 160,000, there are virtually no differences in the average

bias between the four criteria.

5.4 Excluded covariates

Next, we vary the unobserved heterogeneity by excluding various sets of covariates when
estimating ToE models. In the baseline simulations, the ToE model includes baseline socio-
economic characteristics, inflow time dummies and regional information. Here, we gener-
ate more unobserved heterogeneity by excluding additional covariates (all the socio-economic
characteristics in Panel A of Table A-1) and less heterogeneity by excluding less covariates
(earnings history in Panel F of Table A-1). The resulting bias is 9.5% and 4.0%, respectively,
which can be compared to the bias of 6.2% in the baseline setting.

Columns 1-3 of Table A-3 in the appendix display results for the model with more exten-
sive unobserved heterogeneity. As in the baseline setting, the ToE model is able to adjust for a
large share of the bias induced by the unobserved heterogeneity. For instance, with a sample
size of 10,000, the bias for the specification without unobserved heterogeneity (not displayed)
is 9.4%, but it drops to 2-3% when we specify the mass points of the unobserved heterogene-
ity distribution according to the AIC, BIC or HQIC criteria (Panel A). As before, these more
restrictive criteria return the lowest bias, whereas the ML criterion selects a model with too
many support points.

When using 40,000 observations, the bias is smaller for the AIC criterion than for BIC and
HQIC criteria. However, when we create less substantial unobserved heterogeneity by exclud-
ing fewer covariates (Columns 4-6), the average bias is lower for the more restrictive BIC and
HQIC criteria than for AIC. We conclude that none of the information criteria is superior in all

settings.
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5.5 Misspecifications of the model

Since we use single-spell data, identification of the ToE model requires independence between
the included covariates and the unobserved heterogeneity (random effects assumption). This
may not hold in our setting, since we create unobserved heterogeneity by leaving out certain
blocks of covariates, and these excluded covariates may be correlated with those that we in-
clude when we estimate the ToE model. We therefore perform additional simulation exercises
taking out various different blocks of covariates from the model, where we compare settings
with contrasting degrees of correlation between the covariates used in the ToE model and the
excluded covariates. Specifically, we consider three settings: one with a strongly positive, one
with a mildly positive and one with a negative correlation.?? To facilitate the comparisons,
we select covariates to include in the model such that the starting bias, corresponding to the
specifications with one support point (no unobserved heterogeneity), is similar across the al-
ternative degrees of correlation (between 4.4% and 4.8%).

Panel A of Table A-4 in the appendix shows the simulation results with samples of size
10,000. Overall, the information criteria perform similarly as before. The ML criterion selects a
larger number of support points which leads to larger bias, and the AIC, BIC and HQIC criteria
select more parsimonious models characterized by lower bias than for the ML criterion. The
fact that this result holds regardless of the degree of correlation between the observed and
the unobserved variables is reassuring: even when the variables taken out of the model are
strongly related to those left in the ToE model, the relative performance of the information
criteria is not affected. We obtain similar results for sample size of 40,000 (Panel B of Table
A-4).

An alternative approach to excluding different sets of covariates is to include interaction
terms between covariates when estimating the true selection model and subsequently omit
these interactions when we estimate the ToE model. This creates a different source of misspec-
ification since the omitted interaction terms create another type of correlation between the co-
variates and the unobserved heterogeneity. We start from the baseline selection model, which
includes all the covariates in Table A-1. We then add interactions between the socio-economic
characteristics and either the short-run employment history variables or the short-run unem-
ployment history variables (see Panels A, C and D of Table A-1). This exercise generates two
additional selection models which we use to simulate new placebo treatments. We then sample
spells and estimate the ToE model as before. The results are given in Columns 5-12 of Table
A-5, which also reports the baseline results with no interaction in Columns 1-4. As before,
there is no clear ranking between the AIC, BIC and HQIC criteria, and all three perform better
than a model without unobserved heterogeneity. Here, the ML approach performs similar to
the three information criteria in terms of the bias but worse when looking at the MSE.

We also consider violations of the multiplicative hazard rate assumption embedded in the

22To compute the correlation, we use the parameter estimates of the selection model that includes all the covari-
ates, as reported in Table A-1 in the appendix. We take covariate values at the onset of the unemployment spell.
For each spell, the parameter estimates and the excluded covariates can be used to calculate a single index. This
linear predictor equals V), in the simulations. We correlate this with a single index based on the included covariates
used in the selection model. This produces a scalar that measures the degree of correlation between the observed
and unobserved covariates in the model.
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ToE model functional form. To this aim, we allow for separate baseline hazards for males
and females in the true selection model, which creates non-multiplicativity as the baseline
hazard is now partly determined by the observed covariates in the model. By ignoring this
non-multiplicativity when estimating the ToE models we examine this possible misspecifica-
tion. Besides gender, we also consider separate baseline hazards by age reclassified into the
categories of Table A-1. The results in Table A-6 are similar to those previously obtained when
ignoring the interaction terms: we find no clear ranking of the information criteria but all three

perform better than a model without unobserved heterogeneity.

5.6 Estimation of the unobserved heterogeneity distribution

So far we have focused on the treatment effect, but the overall performance of the ToE model
can also be assessed by inspecting to what extent the estimated discrete distributions for the
unobserved heterogeneity approximates the true one. To examine this, we focus on the un-
observed heterogeneity for the treatment duration, T),. For this duration, the true unobserved
heterogeneity, V), is known since we generate it by leaving out certain blocks of covariates. On
the other hand, since we do not simulate the outcome durations, the exact composition of V, is
unknown.

For each actual treated and control unit, we use the coefficients of the estimated selection
model reported in Table A-1 in the appendix to compute the linear predictor of the variables
left out from the model, corresponding to the V), term. Then, in Table A-7 in the appendix, we
compare the first two moments of this true unobserved heterogeneity (Panel A) with the corre-
sponding moments for the estimated unobserved heterogeneity from the ToE models (Panels
B-C). Panel B shows that a larger number of support points tend to overestimate the dispersion
of the unobserved heterogeneity, whereas the mean of the unobserved heterogeneity distribu-
tion tends to be slightly underestimated. Finally, Panel C indicates that the ML criterion returns
an unobserved heterogeneity distribution with a variance that is too large when compared to
the true one, whereas for the more restrictive information criteria (AIC, BIC and HQIC) the

variance is too small.??

5.7 Time-varying covariates

We now use additional variation in the form of time-varying covariates (local unemployment
rate). The idea is that time-varying covariates generate exogenous shifts in the hazard rates
that help to recover the influence of the unobserved heterogeneity and separate it from the
treatment effect. This is because current factors have an immediate impact on the exit rate,
while past factors affect the current transition probabilities only through the selection process
(for a more detailed discussion, see van den Berg and van Ours, 1994, 1996).

The time-varying covariate that we use is time-varying unemployment rate measured at

the monthly level for each region, referred to as the local unemployment rate. The same co-

2Note that all information criteria select the number of support points based on the joint assessment of the
treatment and outcome equations. This complicates the interpretation of whether a given model fits the unobserved
heterogeneity in the best way, since as mentioned we do not know the true unobserved heterogeneity distribution
for the outcome equation.
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variate was included in the selection model to simulate the placebo treatments. The results
from this exercise are presented in Table 3. The first row of Panel A shows that the bias with-
out adjusting for unobserved heterogeneity (one support point) is 5.6%. As before, additional
support points are then stepwise included (Panel A). The results confirm what was found in the
baseline simulations: both under-correcting and over-correcting for unobserved heterogeneity
leads to bias; the ML criterion tends to select models with an overly-dispersed unobserved het-
erogeneity, whereas the three criteria that penalize parameter abundance (AIC, BIC and HQIC)
all perform well.

One important difference compared to the baseline simulations is that the average bias
for the BIC and HQIC are now closer to zero, supporting the idea of using time-varying co-
variates when estimating ToE models. Note that this result holds even though we generated
substantial and complex heterogeneity by omitting a large number of covariates, including
a wide range of short- and long-term labor market history variables, as well as firm charac-
teristics and attributes of the last job, which produced substantial bias in the model without

unobserved heterogeneity.

6 Alternative duration models

We now compare the approach for the ToE model to approaches based on two other commonly
used duration models: the Cox PH model and the Stratified Cox model, as explained in Section
3.3 above. We use the data from our analyses above with placebo treated and non-treated,
where the placebo treatments are generated using the full set of covariates in Table A-1. In each
replication, we first select a sample of 10,000 spells (or 40,000). For the estimation of the ToE
model and the Cox PH model we directly use this sample of of 10,000 spells. For the Stratified
Cox model we must use multiple-spell data. We proceed as follows. First, for comparison
reasons we start with the same 10,000 spells. Out of the corresponding set of non-repeated
individuals, we select those with at least two spells (among the full set of simulated durations,
not just in the sampled 10,000 spells). Since individuals with only one spell are discarded
and the selected people have at least two but possibly more spells, the final sample size of each
replication is in general different from 10,000. Overall, this mimics a realistic sampling scenario
where researchers do not have access to the same number of spells when performing multiple-
spell vs. single-spell analyses. We repeat this procedure in each replication and estimate the
three models using the selected samples. For simplicity, we only present the AIC criterion
results for the ToE model, but we obtain similar results when using the other criteria.

In Columns 1-4 of Table 4 we present results when using the same time window as in the
main analysis (i.e., the full sampling period 2002-2011). As expected, the Cox PH model leads
to biased estimates as it fails to adjust for the correlated unobserved heterogeneity created in
our simulation setting. As before, the ToE model removes a substantial share of this bias. Also,
as expected, the Stratified Cox model reduces the bias. In particular, the magnitude of the
bias is similar to that obtained when estimating the ToE model, but its sign is reversed. There
may be several reasons for this result. In particular, if the unobserved heterogeneity is not
constant across spells, this can drive the bias in different directions. For instance, unobserved
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characteristics may change over time and the outcome (exit and treatment) of previous spells
may affect future spells.

We next consider different sampling windows. We first narrow the sampling from 2002-
2011 to 2006-2009 and then to 2006-2007. These tighter sampling windows mean that the data
will include relatively fewer individuals with multiple-spells, but also that the average time
between the multiple spells will be shorter than for the full sampling window. This may affect
how the stratified Cox analysis performs in relation to the other two estimation approaches.
The results in Table 4 show that tightening the sampling windows has relatively little system-
atic impact on the ToE and Cox PH results. But tighter windows have more substantial impact
on the Stratified Cox results, especially regarding the MSE: going from the full sampling period
to the tightest sampling period increases the MSE by more than five times. An explanation for
this result could be that a tighter sampling window implies less multiple spells. We conclude
that a Stratified Cox approach is a viable alternative to account for unobserved heterogeneity
if the data includes many individuals with multiple spells, especially since a stratified Cox
analysis is easier and less computationally demanding than a ToE estimation with complex
unobserved heterogeneity. However, a stratified Cox analysis is less useful if multiple spells

are uncomimeon.

7 Conclusions

We modify a recently proposed simulation technique, the Empirical Monte Carlo approach, to
evaluate the Timing-of-Events model for dynamic treatment evaluation with selective assign-
ment. Our analyses provide several guidelines on how to specify and estimate ToE models in
practice.

Information criteria are a reliable way to specify the number of support points to mimic
the unobserved heterogeneity distribution in the model, provided that the criteria include a
substantial penalty for parameter abundance. Information criteria with a small penalty for
abundance, such as the ML criterion, should be avoided. Three criteria that perform well
are the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the
Hannan-Quinn information criterion (HQIC). We find that when specifying the unobserved
heterogeneity distribution of the model, all three criteria protect both against the inclusion of
spurious support points (which avoids over-correction problems) and against the inclusion of
too few support points. None of these three criteria dominates the others across all settings.

Overall, we find that the ToE approach is able to adjust for substantial unobserved het-
erogeneity generated by omitting relevant and diverse covariates. As long as an appropriate
information criterion is used, this finding is robust across alternative specifications. Moreover,
adding time-varying covariates (such as the local unemployment rate) further improves the
performance of the ToE estimator.

When comparing the ToE model with other commonly used duration models we find that
a standard Cox PH analysis, as expected, performs poorly in configurations characterized by
correlated unobserved heterogeneity. On the other hand, the Stratified Cox model, which al-
lows for unobserved heterogeneity by exploiting information from individuals who have mul-
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tiple spells, performs well for data with frequent multiple spells but less well when multiple
spells are uncommon.

We also examine which types of observable covariates are important confounders when
evaluating labor market programs. We find that it is helpful to control for short-term labor
market histories, whereas controlling for long-term labor market histories appears to be less
important. Moreover, controlling for features of the short-term employment history appears
to be more effective than controlling for features of the short-term unemployment history. One
interesting topic for further research is to reconcile the use of of labor market history indicators
with that of the ToE framework and its identifying assumptions.

A different topic for further research would be to develop formal data-driven methods for
determining the optimal level of correction for unobserved heterogeneity. For example, it is
conceivable that cross-validation may determine the number of support points as a function
of their predictive power. A potential obstacle for a formal statistical underpinning is that the

number of support points is necessarily discrete.
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Tables and Figures

Table 1: Estimated bias of the treatment effect when controlling for different blocks of covari-
ates

Est. SE
Panel A: Baseline
Baseline socio-economic characteristics 0.0693™  (0.00241)
Calendar time (inflow dummies) 0.1107""  (0.00239)
Region dummies 0.0912"  (0.00240)
Local unemployment rate 0.1174™  (0.00239)
All the above 0.0616™"  (0.00243)
Panel B: Baseline and:
Employment history (last 2 years) and duration -0.0144™  (0.00244)
Unemployment history (last 2 years) and duration 0.0503™"  (0.00243)
Earnings history (last 2 years) 0.0401™"  (0.00243)
Welfare benefit history (last 2 years) 0.0469™"  (0.00243)
All of the above -0.0228™  (0.00244)
Panel C: Baseline, short-term history and:
Employment history (last 10 years) -0.0239™"  (0.00244)
Unemployment history (last 10 years) -0.0289™"  (0.00244)
Welfare benefit history (10 years) -0.0190™"  (0.00244)
All of the above -0.02417"  (0.00244)
Panel D: Baseline, short-term history, long-term history and:
Last wage -0.0266""  (0.00244)
Last occupation dummies -0.0246™  (0.00244)
Firm characteristics (last job) -0.0228™  (0.00245)
Unemployment benefits 0.0153"™"  (0.00244)
Parents income -0.0231""  (0.00244)
All of the above 0.0090™"  (0.00246)

Notes: Estimated biases using the full sample of placebo treated and non-treated with control
for for different blocks of covariates. The number of observations is 2,564,561. Hazard rate esti-
mates for time in unemployment using a parametric proportional hazard model with piecewise
constant baseline hazard (8 splits). *, ** and *** denote significance at the 10, 5 and 1 percent
levels.
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Table 2: Bias, standard error (SE) and MSE of the estimated treatment effect for a pre-specified
number of support points, and average number of support points by model selection criterium

Sample size
10,000 40,000 160,000

Bias SE MSE Bias SE MSE Bias SE MSE
] (2) 3) 4) () (6) ) (8 ©)

Panel A: Number of pre-specified support points

1 0.060  0.039  0.0052 0.057  0.020  0.0037 0.058  0.009 0.0034
2 0.027  0.064 0.0048 0.022  0.031 0.0014 0.023  0.014  0.0007
3 0.046  0.089  0.0101 0.030  0.042 0.0026 0.028  0.019  0.0011
4 0.057  0.098 0.0128 0.035  0.043 0.0031 0.032  0.021  0.0015
5 0.062  0.097 0.0133 0.037  0.044 0.0033 0.033  0.021  0.0015
6 0.064  0.099 0.0138 0.037  0.044 0.0033 0.033  0.021  0.0015
Panel B: Model selection criteria
ML 0.064  0.099 0.0139 0.037  0.044 0.0033 0.033  0.021  0.0015
AIC 0.032  0.076  0.0068 0.024  0.036  0.0018 0.026  0.018  0.0010
BIC 0.027  0.064 0.0048 0.022  0.031 0.0014 0.023  0.014  0.0007
HQIC 0.027  0.064 0.0048 0.022  0.031 0.0014 0.023  0.014  0.0007
Panel C: Average # support points, by selection criterium
ML 411 3.99 4.10
AIC 2.14 221 2.53
BIC 1.99 2.00 2.00
HQIC 2.01 2.00 2.04

Notes: Bootstrapped bias, standard error and MSE (mean squared error) of the treatment effect from a ToE model
with different specifications of the discrete support point distribution. Simulations using 500 replications with
random drawings from the full sample with placebo treated and placebo non-treated. Hazard rate estimates for
time in unemployment. Each model uses a piecewise constant baseline hazard (8 splits) and the observed covari-
ates include socio-economic characteristics, inflow year dummies, regional indicators and local unemployment
rate.
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Figure 1: Distribution of the bias of the estimated treatment effect for a pre-specified number
of support points, by number of support points
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Note: Distribution of the estimated bias of the treatment effect from a ToE model with different specifications of the discrete
support point distribution. Simulations using 500 replications with 10,000 random drawings from the full sample of placebo
treated and placebo non-treated. Hazard rate estimates for time in unemployment. Each model uses a piecewise constant baseline
hazard (8 splits) and the observed covariates include socio-economic characteristics, inflow year dummies, regional indicators

and local unemployment rate.
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Table 3: Bias, standard error (SE) and MSE of the estimated treatment effect with time-varying
local unemployment rate, by model selection criterium and sample size

Time-varying unemployment rate
Specification Bias SE MSE
) &) ®)
Panel A: 10,000 observations
Number of pre-specified support points

1 0.056 0.039 0.0046
2 0.016 0.066 0.0046
3 0.056 0.100 0.0132
4 0.074 0.109 0.0174
5 0.082 0.108 0.0185
6 0.084 0.109 0.0189
Model selection criteria
ML 0.084 0.109 0.0189
AIC 0.033 0.090 0.0093
BIC 0.016 0.066 0.0046
HQIC 0.017 0.069 0.0051
Average # support points, by selection criteria
ML 4.46
AIC 2.25
BIC 1.99
HQIC 2.01

Panel B: 40,000 observations
Number of pre-specified support points

1 0.053 0.020 0.0032
2 0.010 0.032 0.0012
3 0.036 0.053 0.0040
4 0.052 0.055 0.0057
5 0.056 0.053 0.0060
6 0.057 0.053 0.0060
Model selection criteria
ML 0.057 0.053 0.0060
AIC 0.026 0.050 0.0032
BIC 0.010 0.032 0.0012
HQIC 0.011 0.035 0.0014
Average # support points, by selection criteria
ML 4.69
AIC 2.40
BIC 2.00
HQIC 2.01

Notes: Simulations with 10,000 observations. Estimated bias, standard error and MSE (mean
squared error) of the treatment effect from a ToE model with different specifications of the

discrete support point distribution. Simulations using 500 replications with random drawings
from the full sample with placebo treated and placebo non-treated. Hazard rate estimates
for time in unemployment. Each model uses a piecewise constant baseline hazard (8 splits).
The ToE model also includes baseline socio-economic characteristics, inflow year dummies,
regional indicators and local unemployment rate.

30



1e

Table 4: Treatment effect bias for different Cox model specifications

Spells sampled
All (2002-2011) 2006-2009 2006-2007
MP Bias SE MSE MP Bias SE MSE MP Bias SE MSE
“m @ 6 @ G @ @O @O © (@0 11 (@12
Panel A: 10,000 observations
ToE (AIC) 2.72 0.022 0.065 0.0047 2.65 0.037 0.067 0.0059 2.74 0.014 0.073 0.0056
Cox model - 0.118 0.035 0.0164 — 0.132 0.037 0.0201 - 0.097 0.039 0.0394
Stratified Cox - -0.032 0.062 0.0087 - -0.023 0.107 0.0235 - -0.038 0.159 0.0520
Panel B: 40,000 observations
ToE (AIC) 2.94 0.025 0.031 0.0016 3.03 0.033 0.032 0.0021 3.19 0.009 0.035 0.0013
Cox model — 0.120 0.018 0.0150 — 0.131 0.017 0.0176 - 0.097 0.019 0.0100
Stratified Cox - -0.031 0.032 0.0030 — -0.021 0.048 0.0051 - -0.045 0.081 0.0150

Notes: Estimated bias, standard error (SE) and mean squared error (MSE) of the placebo treatment effect on the
hazard rate for time in unemployment. All model specifications include socio—economic characteristics, inflow
year dummies, regional indicators and local unemployment rate. The alternative runs use different sampling
windows for estimating the ToE and Cox specifications: full set of spells (inflow years 2002-2011), medium time
window (2006-2009), short time window (2006-2007). Simulations using 500 replications with random drawings
from the full sample of placebo treated and placebo non-treated. At each draw, both ToE and non-Stratified Cox
models use 10,000 spells (one per person). Stratified Cox models use the subset of spells of people that have at

least 2 spells in the given sampling window.



Appendix: additional tables and figures

Table A-1: Sample statistics and estimates for the selection model using the full sample of
actual treated and non-treated

Treated Control  Selection model

Est. Std. Er.
Number of observations 76302 2564561 2,640,863
Panel A: Baseline socio-economic characteristics
Country of origin: Not Europe 0.20 0.16 0.0910*** (0.0120)
Age 25-29 0.23 0.26 0.1366*** (0.0126)
Age 30-34 0.20 0.20 0.1188*** (0.0117)
Age 40-44 0.16 0.15  -0.0363*** (0.0123)
Age 45-49 0.12 011  -0.1441** (0.0137)
Age 50-54 0.09 0.09  -0.3510*** (0.0160)
Male 0.67 0.51 0.4719*** (0.0091)
Married 0.35 0.34 0.0017  (0.0089)
Children: At least one 043 0.43 0.1265*** (0.0100)
Children: No. of children in age 0-3 0.20 0.20 0.0565*** (0.0116)
Education: Pre-high school 0.18 0.17  -0.1432** (0.0253)
Education: High school 0.57 0.50 0.0624** (0.0248)
Education: University College or higher 0.22 0.31 -0.0490** (0.0250)
Panel B: Inflow time and regional information
Beginning of unemployment: June-August 0.26 0.30 -0.0135  (0.0084)
Intlow year: 2003-2005 0.30 035  -0.3952*** (0.0217)
Inflow year: 2006-2007 0.16 0.18  -0.2562*** (0.0230)
Inflow year: 2008-2009 0.23 0.18  -0.3304*** (0.0233)
Inflow year: 2010-2011 0.18 0.17  -0.2455*** (0.0240)
Region: Stockholm 0.13 0.21 -0.3412*** (0.0158)
Region: Gothenborg 0.13 0.16  -0.3634*** (0.0127)
Region: Skane 0.12 0.14  -0.2910** (0.0129)
Region: Northern parts 0.21 0.15 0.1647*** (0.0112)
Region: Southern parts 0.14 0.12 0.0111  (0.0126)
Monthly regional unemployment rate 10.54 9.77 0.0234*** (0.0021)
Panel C: Short—term employment history (2 years) and employment duration
Time employed in last spell 859.82 831.20 0.0000  (0.0000)
Missing time employed in last spell 0.20 0.17  0.0493*** (0.0150)
Months employed in last 6 months 3.37 3.54 -0.0003  (0.0039)
Months employed in last 24 months 12.79 13.50  0.0040*** (0.0013)
No employment in last 24 months 0.22 0.19  -0.1354** (0.0250)
Time since last employment if in last 24 months 2.31 242  -0.0069*** (0.0015)
Number of employers in last 24 months 1.66 1.79 0.0115*** (0.0035)
Employed 1 year before 0.59 0.59 0.0353*** (0.0122)
Employed 2 years before 0.59 0.59 0.0207*  (0.0122)
Panel D: Short—term unemployment history (2 years) and unemployment duration
Time unemployed in last spell 107.11 89.43 0.0000  (0.0000)
Missing time unemployed in last spell 0.53 0.51 0.0213*  (0.0130)
Days unemployed in last 6 months 18.94 14.79  0.0008*** (0.0002)
Days unemployed in last 24 months 143.53 120.87  0.0003*** (0.0000)
No unemployment in last 24 months 0.44 0.44  -0.0511** (0.0150)
Days since last unempl. if in last 24 months 15.12 14.76 0.0001  (0.0001)
Number of unempl. spells in last 24 months 0.82 0.88 0.0033  (0.0060)
Unemployed 6 months before 0.20 0.16 0.0171  (0.0151)
Unemployed 24 months before 0.24 0.22  -0.0327** (0.0121)
Any program in last 24 months 0.03 0.02 0.0579**  (0.0291)
Panel E: Short—term welfare history (2 years)
Welfare benefits -1 year 4928.00 3742.27 0.0318*** (0.0078)
Welfare benefits -2 years 4258.73  3542.66  0.0075 (0.0095)
On welfare benefits -1 year 0.19 0.14 0.0028 (0.0166)
On welfare benefits -2 years 0.17 0.14  -0.0720*** (0.0163)

Panel F: Earnings history (2 years)

Continue to next page
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Table A-1 - continued from previous page

Treated Control  Selection model
Est. Std. Err.
Earnings 1 year before 111684.78 11024791 0.0095* (0.0055)
Earnings 2 years before 111858.48 110612.95 -0.0157* (0.0094)
Panel G: Long-term employment history (10 years)
Months employed in last 10 years 58.19 6291  -0.0022*** (0.0002)
Number of employers in last 10 years 4.72 5.12 0.0119*** (0.0012)
Cumulated earnings 5 years before 533484.45 530466.42 0.0629*** (0.0114)
Panel H: Long-term unemployment history (10 years)
Days unemployed in last 10 years 788.31 693.41 -0.0001*** (0.0000)
No unemployment in last 10 years 0.18 0.17  -0.0890** (0.0158)
Days since last unemployment if in last 10 years 256.77 290.49  -0.0000*** (0.0000)
Number of unemployment spells in last 10 years 3.63 3.83 0.0074*** (0.0018)
Average unemployment duration 95.31 90.15  -0.0001*** (0.0000)
Duration of last unemployment spell 180.26 154.83  -0.0001*** (0.0000)
Any program in last 10 years 0.15 0.12 0.0348  (0.0227)
Any program in last 4 years 0.06 0.05 0.0509**  (0.0243)
Number of programs in last 10 years 0.19 0.15 0.0342**  (0.0157)
Panel I: Long-term welfare history, out-of-labor-force (10 years)
Yearly average welfare benefits last 4 years 4239.77 353338 -0.0213 (0.0142)
Yearly average welfare benefits last 10 years 391849  3448.42 -0.0828** (0.0086)
No welfare benefits last 4 years 0.69 0.75  -0.0824*** (0.0150)
No welfare benefits last 10 years 0.51 0.59  -0.0946*** (0.0109)
Panel J: Characteristics of the last job
Wage 18733.31 18860.58 -0.0597*** (0.0052)
Wage missing 0.54 0.52 -0.0215 (0.0337)
Occupation:
Manager 0.04 0.07  -0.3102*** (0.0388)
Requires higher education 0.04 0.06  -0.1240** (0.0375)
Clerk 0.04 0.05 -0.0037  (0.0374)
Service, care 0.09 0.13 -0.0047 (0.0357)
Mechanical, transport 0.13 0.07 0.2107*** (0.0352)
Building, manufacturing 0.06 0.05 0.0597  (0.0371)
Elementary occupation 0.05 0.05 -0.0044  (0.0375)
Panel K: Characteristics of the last firm
Firm size 2523.01  3873.70  0.0000** (0.0000)
Age of firm 12.95 14.13 0.0006  (0.0009)
Average wage 21588.62 21517.77  0.0007  (0.0048)
Wage missing 0.62 0.58 -0.0459  (0.0541)
Mean tenure of employees 343 3.68 -0.0029  (0.0024)
Age of employees 27.74 29.44  -0.0033*** (0.0009)
Share of immigrants 0.12 0.13  -0.1709*** (0.0255)
Share of females 0.26 0.34  -0.4736*** (0.0236)
No previous firm 0.28 024  -0.4104*** (0.0428)
Most common occupation:
Manager 0.04 0.06  -0.1260** (0.0571)
Higher education 0.04 0.04 -0.0294 (0.0572)
Clerk 0.03 0.03 0.0633  (0.0579)
Service, care 0.10 0.17 0.0396  (0.0554)
Building, manufacturing 0.04 0.03 -0.0574  (0.0574)
Mechanical, transport 0.11 0.06 0.0581  (0.0554)
Elementary occupation 0.02 0.02 -0.0817  (0.0602)
Industry:
Agriculture, fishing, mining 0.01 0.01 -0.0906** (0.0406)
Manufacturing 0.17 0.10 0.2257*** (0.0253)
Construction 0.05 0.06  -0.2065** (0.0292)
Trade, repair 0.06 0.07  -0.1552*** (0.0270)
Accommodation 0.02 0.03  -0.2239*** (0.0336)
Transport, storage 0.06 0.04 0.1663*** (0.0278)
Financial, real estate 0.08 0.08 -0.0127  (0.0265)
Human health, social work 0.06 0.12 -0.1581*** (0.0298)
Other - public sector 0.04 0.08  -0.2254*** (0.0308)

Continue to next page
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Table A-1 - continued from previous page

Treated Control  Selection model

Est. Std. Err.
Other 0.06 0.07  -0.1207*** (0.0277)
Panel L: Unemployment insurance
UL Daily benefit level in SEK 384.11 277.33  0.2316** (0.0118)
UL Eligible 0.84 0.83 -0.0134  (0.0136)
UL No benefit claim 0.37 0.54 0.2181*** (0.0238)
UI 1 year before 12712.71 13211.32 -0.0086 (0.0054)
UI 2 years before 12779.13 13181.89  0.0056  (0.0059)
Cumulated UI 5 years before 62624.69 63758.25 -0.0929*** (0.0075)
Panel M: Parents’ previous income
Mother’s past income (age 35-55) 659.10 772.63 -0.0061  (0.0052)
Father’s past income (age 35-55) 856.04 1039.85 -0.0505*** (0.0055)
Missing mother’s past income 0.39 0.34 0.0185  (0.0138)
Missing father’s past income 0.47 042  -0.0517** (0.0137)
Panel N: Duration dependence
Baseline hazard, part 2 0.2653*** (0.0186)
Baseline hazard, part 3 0.5528*** (0.0161)
Baseline hazard, part 4 0.6408*** (0.0169)
Baseline hazard, part 5 0.6466*** (0.0178)
Baseline hazard, part 6 0.6843*** (0.0166)
Baseline hazard, part 7 0.5186*** (0.0171)
Baseline hazard, part 8 -0.0601*** (0.0162)

Notes: Columns 1-2 report sample averages for the full sample with actual treated and non-treated.
Columns 3-4 estimates and standard errors from the corresponding selection model. *, ** and *** denote
significance at the 10, 5 and 1 percent levels. All earnings and benefits are in SEK and inflation-adjusted.
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Table A-2: Estimated bias of the treatment effect when controlling for different short-term labor
market history variables

Est. SE

Baseline 0.0616™"  (0.00243)
Panel A: Employment duration

Time employed in last spell 0.0394™  (0.00243)
Panel B: Short-term employment rates (2 years)

Months employed in last 6 months 0.0168™"  (0.00243)

Months employed in last 24 months 0.00917"  (0.00243)

No employment in last 24 months 0.0121""  (0.00243)

All variables -0.0004 (0.00244)
Panel C: Other short-term employment history (2 years)

Employed 1 year before 0.0160™"  (0.00243)

Employed 2 years before 0.0265""  (0.00243)

Time since last employment if in last 24 months 0.0598™"  (0.00243)

Number of employers in last 24 months 0.0427°"  (0.00243)

All variables 0.0022 (0.00243)
Panel D: Unemployment duration

Time unemployed in last spell 0.0547""  (0.00243)
Panel E: Short-term unemployment rates (2 years)

Days unemployed in last 6 months 0.0632™"  (0.00243)

Days unemployed in last 24 months 0.0616™"  (0.00243)

No unemployment in last 24 months 0.06117"  (0.00243)

All variables 0.0564™"  (0.00243)
Panel F: Other short-term unemployment history (2 years)

Days since last unemployment if in last 24 months 0.0616™"  (0.00243)

Number of unemployment spells in last 24 months 0.0560""  (0.00243)

Unemployed 6 months before 0.0632""  (0.00243)

Unemployed 24 months before 0.0590"  (0.00243)

Any program in last 24 months 0.0618™  (0.00243)

All variables 0.0539™  (0.00243)

Notes: All models also include the baseline covariates (socio-economic characteristics, inflow year
dummies, regional indicators and local unemployment rate). Estimated biases using the full sam-
ple of placebo treated and non-treated with control for for different blocks of covariates. The
number of observations is 2,564,561. Hazard rate estimates for time in unemployment using a
parametric proportional hazard model with piecewise constant baseline hazard (8 splits). *, ** and
*** denote significance at the 10, 5 and 1 percent levels.

35



Table A-3: Bias, standard error and MSE of the estimated treatment effect when excluding dif-
ferent sets of covariates, by model selection criterium and sample size

Exclude more covariates Exclude fewer covariates
Bias SE MSE Bias SE MSE
ey 2 ®3) 4 ®) (6)

Panel A: 10,000 observations

ML 0.091 0.162 0.0344 0.073 0.122 0.0201

AIC 0.029 0.010 0.0108 0.035 0.114 0.0142

BIC 0.024 0.067 0.0051 0.005 0.063 0.0039

HQIC 0.024 0.068 0.0052 0.013 0.091 0.0085
Average # support points, by selection criteria

ML 4.78 5.20

AIC 2.34 3.12

BIC 2.00 2.20

HQIC 2.01 2.62
Panel B: 40,000 observations

ML 0.025 0.068 0.0053 0.049 0.060 0.0060

AIC 0.009 0.049 0.0025 0.029 0.062 0.0047

BIC 0.019 0.034 0.0015 0.005 0.039 0.0016

HQIC 0.018 0.036 0.0016 0.010 0.050 0.0026
Average # support points, by selection criteria

ML 4.88 5.59

AIC 2.65 4.22

BIC 2.00 3.16

HQIC 2.04 3.62

Notes: The “exclude more covariates” model excludes baseline socio-economic characteristics and the “exclude
fewer covariates” adds control for short-term earnings history from the baseline model which includes baseline
socio-economic characteristics, inflow year dummies, regional indicators and local unemployment rate. Esti-
mated bias, standard error and MSE (mean squared error) of the treatment effect from a ToE model with dif-
ferent specifications of the discrete support point distribution. Simulations using 500 replications with random
drawings from the full sample with placebo treated and placebo non-treated. Hazard rate estimates for time in
unemployment. Each model uses a piecewise constant baseline hazard (8 splits).
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Table A-4: Bias, standard error (SE) and MSE of the estimated treatment effect when augment-
ing the baseline model with covariates correlated in varying degrees with those excluded from the

ToE specifications

Degree of correlation Positive Small positive Negative
Bias SE MSE Bias SE MSE Bias SE MSE
1) () 3) “) ®) (6) 7) (8) )
Correlation 0.278 0.049 -0.257
Panel A: 10,000 observations
ML 0.063 0.093 0.0127 0.063 0.100 0.0140 0.044 0.099 0.0119
AIC 0.035 0.076 0.0070 0.033  0.087 0.0087 0.021  0.081 0.0070
BIC 0.027  0.060 0.0043 0.028 0.070 0.0057 0.019 0.065 0.0046
HQIC 0.027  0.060 0.0043 0.029 0.071 0.0059 0.017 0.066 0.0046
Average # support points, by selection criteria
ML 4.19 448 4.27
AIC 217 2.28 2.20
BIC 2.00 1.99 1.95
HQIC 2.01 2.01 2.01
Panel B: 40,000 observations
ML 0.042 0.041 0.0034 0.036  0.047 0.0035 0.019 0.046 0.0025
AIC 0.025 0.036 0.0019 0.025 0.045 0.0026 0.011  0.039 0.0016
BIC 0.022  0.029 0.0013 0.024 0.034 0.0018 0.013 0.032 0.0012
HQIC 0.022 0.030 0.0014 0.024 0.035 0.0018 0.013  0.032 0.0012
Average # support points, by selection criteria
ML 3.99 4.62 4.34
AIC 2.24 2.62 2.28
BIC 2.00 2.00 2.00
HQIC 2.01 2.04 2.01

Notes: The three model specifications correspond to the baseline model of Table 2, augmented with Welfare
benefit history (last 2 years), “Previous firm most common occupation” dummies and Last occupation dummies,

for the “positive correlation

’

”, “small positive correlation” and “negative correlation” specifications, respectively.

Correlation coefficients computed as explained in Section 5.5. Estimated bias, variance and mean squared error
of the treatment effect from a ToE model with different specifications of the discrete support point distribution.
Simulations set as for Table 2.
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Table A-5: Treatment effect bias when the propensity score includes interactions between de-
mographics and short-run history variables

No interactions (baseline) Employment history Unemployment history
MP  Bias SE  MSE MP  Bias SE  MSE MP  Bias SE  MSE
m @ 6 @ G ® 7 © © 10 a1 12

Panel A: 10,000 observations
1 MP 1.00 0.060 0.039 0.0052 1.00 0.071 0.038 0.0065 1.00 0.067 0.038 0,0060

ML 411 0.064 0.099 0.0139 558 0.031 0.067 0.0055 566 0.026 0.070 0.0056
AIC 214 0.032 0.076 0.0068 228 0.036 0.060 0.0049 229 0.031 0.061 0.0047
BIC 199 0.027 0.064 0.0048 1.99 0.041 0.055 0.0047 199 0.037 0.055 0.0044

HQIC 201 0.027 0.064 0.0048 202 0.041 0.056 0.0048 2.02 0.037 0.056 0.0045

Panel B: 40,000 observations
1 MP 1.00 0.057 0.020 0.0037 1.00 0.068 0.020 0.0050 1.00 0.064 0.020 0.0045

ML 399 0.037 0.044 0.0033 545 0.024 0.033 0.0016 550 0.019 0.032 0.0014
AlIC 221 0.024 0.036 0.0018 293 0.027 0.032 0.0017 294 0.023 0.031 0.0015
BIC 200 0.022 0.031 0.0014 2.00 0.040 0.026 0.0023 200 0.036 0.025 0.0019

HQIC 2.00 0.022 0.031 0.0014 261 0.030 0.031 0.0019 261 0.026 0.031 0.0016

Notes: Treatment effect bias from ToE baseline specifications as in Table 2 of the draft, when the simulated histo-
ries are obtained via alternative selection models. The bias and related measures are obtained across 500 repli-
cations of samples with 10,000 spells. In No interactions (baseline), the selection model is specified including the
covariates listed in Table A-1 of the draft. In Employment history, we additionally include interactions between
demographics (age squared, immigrant status, male, married, with children 0-3, education) and short-run em-
ployment history variables (Panel C of Table A-1). In Unemployment history we add interactions between the
demographics and short-run unemployment history variables (Panel D of Table A-1).
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Table A-6: Treatment effect bias when the selection model has a non-multiplicative hazard

Baseline Non-multiplicative hg(t): male Non-multiplicative hy(t): age
MP Bias SE MSE MP Bias SE MSE MP Bias SE MSE
) () @) (4) ) (6) @) ®) © 10 a1 12
Panel A: 10,000 observations
1MP 1.00 0.060 0.039 0.0052 1.00 0.062 0.039 0.0054 1.00 0.062 0.039 0.0054
ML 411 0.064 0.099 0.0139 577 0.029 0.073 0.0062 576 0.029 0.073 0.0062
AIC 214 0.032 0.076 0.0068 2.37 0.030 0.063 0.0049 2.37  0.030 0.064 0.0050
BIC 1.99 0.027 0.064 0.0048 199 0.036 0.058 0.0047 199 0.036 0.058 0.0047
HQIC 2.01 0.027 0.064 0.0048 2.04 0.036 0.059 0.0048 2.04 0.036 0.059 0.0047
Panel B: 40,000 observations
1MP 1.00 0.057 0.020 0.0037 1.00 0.059 0.020 0.0039 1.00 0.059 0.020 0.0039
ML 399 0.037 0.044 0.0033 578 0.018 0.035 0.0015 579 0.018 0.035 0.0015
AIC 221 0.024 0.036 0.0018 299 0.021 0.032 0.0014 298 0.021 0.032 0.0015
BIC 2.00 0.022 0.031 0.0014 2.02 0.034 0.026 0.0019 2.02 0.034 0.026 0.0019
HQIC 2.00 0.022 0.031 0.0014 265 0.023 0.032 0.0016 2.64 0.023 0.032 0.0016

Notes: Treatment effect bias from ToE baseline specifications as in Table 2 of the draft, when the simulated histo-
ries are obtained via alternative selection models. The bias and related measures are obtained across 500 repli-
cations of samples with 10,000 spells. In Columns 14, the selection model is specified including the covariates
listed in Table A-1 of the draft. In Columns 5-8 we interact the baseline hazard splits by gender when generating
the placebo treatments but ignore this when estimating the ToE model. In Columns 9-12 we instead interact the
baseline hazard with age-group dummies (24-29, 30-34, 35-39, 40-44, 45-49 and 50-54).
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Table A-7: Comparison of the actual and the estimated distribution of unobserved heterogene-
ity V, in the selection equation

Mean exp(V,) SEexp(Vy)

Panel A: Actual distribution

0.00056 0.00023
Panel B: Estimated using a fixed number of support points
2 0.00047 0.00003
3 0.00047 0.00020
4 0.00046 0.00023
5 0.00047 0.00027
6 0.00047 0.00031
Panel C: Estimated using section criteria
ML 0.00047 0.00030
AIC 0.00047 0.00003
BIC 0.00047 0.00010
HQIC 0.00047 0.00003

Notes: Mean and standard deviation of the actual and the estimated distri-
bution of the unobserved heterogeneity for the treatment duration. The ac-

tual distribution is based on the linear predictor of the covariates excluded

from the ToE models. The estimated distribution is based on the estimated
discrete distributions from the ToE models (averaged across 500 replications,

each with a sample of 10,000 units). Both the actual and the approximated
unobserved heterogeneity distributions include the constant. The ToE model
includes baseline socio-economic characteristics, inflow year dummies, re-
gional indicators and the local unemployment rate.
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